首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Oriented films of MgB2 high-Tc superconductor are synthesized by pulsed laser sputtering of stoichiometric MgB2 targets with subsequent annealing of the amorphous Mg-B material deposited onto MgO(111) substrates. The critical temperature of the films depends on the purity of the targets sputtered. The purification of boron powder in a vacuum makes it possible to minimize the content of impurities in the targets and to prepare MgB2 films exhibiting a critical temperature above 39 K and a sharp inductive transition. A high room-temperature to residual resistivity ratio (more than 3) indicates the good quality of the films.  相似文献   

2.
The possibility of preparing bicrystalline Josephson junctions and bolometers based on superconducting MgB2 on specially prepared bicrystalline MgO substrates is investigated. Microbridges 0.85–6.00 μm in width, intersecting the bicrystalline interface, are formed in epitaxial bicrystalline MgB2 films grown on these substrates. It is found that annealing of bicrystalline samples in oxygen leads to a systematic decrease in the critical current, an increase in the temperature width of the superconducting transition region, and to an improvement of the current-voltage (IV) characteristic, which becomes close in shape to the IV characteristic of a Josephson junction. The response of such a junction to radiation at a frequency of 110 GHz with an amplitude attaining 0.5 mV is measured.  相似文献   

3.
The effect of comparatively weak actions on the structure of the two-gap BCS superconductor MgB2 was studied. The MgB2 samples studied differed in terms of the annealing time at 900°C. It was found that the lattice parameters, residual resistivity, and critical temperature depend only weakly on the annealing time, whereas the electrical resistivity decreases by a few times when the annealing time is increased from 2 to 10 h. It is assumed that the observed effects may be caused by the influence of Mg and B atom ordering in the MgB2 lattice on charge transfer over the two-dimensional B-B σ bonds.  相似文献   

4.
The specific features of the phonon spectrum of the MgB2 compound (T c = 38 K) are investigated by tunneling spectroscopy. It is demonstrated that both the position and the energy width of the fundamental optical mode E 2g in the phonon spectrum are in good agreement with inelastic X-ray spectroscopy data but differ substantially from Raman spectroscopy results. Among possible factors responsible for this discrepancy, the anharmonic and nonadiabatic effects that are characteristic of the MgB2 system are discussed.  相似文献   

5.
The influence of nonstoichiometry of the new high-temperature superconductor MgB2 on its critical temperature was studied by the direct magnetooptical observations of the penetration and trapping of magnetic flux. To preclude the possible influence of accidental factors, a special sample with transition from pure boron to the MgB2 with an excess of Mg was synthesized. In a narrow region near the unreacted boron, the magnetic-field trapping and screening disappear at a temperature 1.5 K higher than in the dominant stoichiometric region of the sample.  相似文献   

6.
This paper presents an overview of the current state of the art in research into the electronic structure and properties of a new superconductor, namely, MgB2, and a large number of related compounds by computational methods of the band theory. Consideration is given to the specific features of the surface states of magnesium diboride, the electron and hole doping effects in this compound, and the concentration dependences of the band structure and the properties of Mg1?xMexB2 and MgB2?yXy solid solutions and a number of superstructures. The electronic properties of AlB2-like phases, boron, higher borides, a series of ternary layered boron-containing phases, and compounds with structures of the antiperovskite type (MgCNi3 and others) are discussed in terms of their superconducting characteristics. The results obtained in modeling nanotubes and fullerene-like nanoparticles based on MgB2 and related borides are analyzed.  相似文献   

7.
MgB2/Fe wires were prepared by electrical self-heating of in situ powder-in-tube wires for the first time at ambient conditions. Characterization of the wires processed at 750 °C, 800 °C and 850 °C for 15 min by XRD, SEM, ϱ–T, susceptibility and JC measurements shows that the MgB2 formed is of high quality particularly with respect to phase purity and transport JC. The method considerably reduces the overall energy consumption vis-à-vis the production cost, simplifies the complexity of the fabrication procedure and is promising for manufacture of high-quality MgB2 superconducting wires. PACS 74.70.Ad; 74.62.Bf; 74.25.Fy; 74.25.Ha; 81.20.Hy  相似文献   

8.
The character of temperature dependences of the electric conductivity of MgB2 granular BCS superconductors at temperatures of ~35–45 K in external magnetic fields H ext of up to ~2 kOe is studied. An increase in the superconducting transition width ΔT c with an increase in Hext is found. The presence of a system of weak links in MgB2-based granular superconductors is established. On the basis of experimental data, MgB2 granular superconductor is assigned to two-level superconducting systems and the H–T phase diagram is constructed.  相似文献   

9.
The x-ray emission spectra of magnesium diboride MgB2 are measured. It is found that the Mg L2,3 and B Kα emission lines are shifted with respect to the spectra of the pure metals toward the low-energy range. The band calculations of the MgB2 diboride in the framework of the full-potential linearized muffin-tin orbital (LMTO) method demonstrate that the electron populations of the shells in both components of MgB2 are higher than those of pure metals. This increase in the electron populations is associated with the crystal contraction and manifests itself in low-energy shifts of the emission lines.  相似文献   

10.
We have studied the behavior of the thermal expansion coefficient α(T) (in a zero magnetic field and at H≈4 T), the heat capacity C(T), and the thermal conductivity κ(T) of magnesium boride (MgB2) in the vicinity of Tc and at lower temperatures. It was established that MgB2, like oxide-based high-temperature superconductors, exhibits a negative thermal expansion coefficient at low temperatures. The anomaly of α(T) in MgB2 is significantly affected by the magnetic field. It was established that, in addition to the well-known superconducting transition at Tc≈40 K, MgB2 exhibits an anomalous behavior of both heat capacity and thermal conductivity in the region of T≈10–12 K. The anomalies of C(T) and κ(T) take place in the same temperature interval where the thermal expansion coefficient of MgB2 becomes negative. The low-temperature anomalies are related to the presence of a second group of charge carriers in MgB2 and to an increase in the density of the Bose condensate corresponding to these carriers at Tc2≈10–12 K.  相似文献   

11.
A detailed theoretical analysis of the experimental data obtained earlier in the studies of the tunneling spectra in the MgB2 two-band superconducting system has been performed. It is shown that most these data are well described in the generalized two-band Bardeen-Cooper-Schrieffer theory with the constants of the intraband electron-phonon interaction that reasonably coincide with the ab initio calculation results. It is shown that the existence of specific collective excitation in this system induced by oscillations of the relative phase of two superconducting condensates (the Leggett mode) indicates the overestimation of the constants of the interband electron-phonon interaction in the ab initio calculations. The dependences of the superconducting gaps and the Leggett mode frequency on the temperature and the disorder degree in the Mg1 − x Al x B2 system have been thoroughly studied.  相似文献   

12.
The monolayer Al2O3:Ag thin films were prepared by magnetron sputtering. The microstructure and optical properties of thin film after annealing at 700 °C in air were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and spectrophotometer. It revealed that the particle shape, size, and distribution across the film were greatly changed before and after annealing. The surface plasmon resonance absorption and thermal stability of the film were found to be strongly dependent on the film thickness, which was believed to be associated with the evolution process of particle diffusion, agglomeration, and evaporation during annealing at high temperature. When the film thickness was smaller than 90 nm, the film SPR absorption can be attenuated until extinct with increasing annealing time due to the evaporation of Ag particles. While the film thickness was larger than 120 nm, the absorption can keep constant even after annealing for 64 h due to the agglomeration of Ag particles. On the base of film thickness results, the multilayer Al2O3:Ag solar selective thin films were prepared and the thermal stability test illustrated that the solar selectivity of multilayer films with absorbing layer thickness larger than 120 nm did not degrade after annealing at 500 °C for 70 h in air. It can be concluded that film thickness is an important factor to control the thermal stability of Al2O3:Ag thin films as high-temperature solar selective absorbers.  相似文献   

13.
The temperature dependences of the specific heat C(T) and thermal conductivity K(T) of MgB2 were measured at low temperatures and in the neighborhood of T c . In addition to the well-known superconducting transition at T c ≈40 K, this compound was found to exhibit anomalous behavior of both the specific heat and thermal conductivity at lower temperatures, T≈10–12 K. Note that the anomalous behavior of C(T) and K(T) is observed in the same temperature region where MgB2 was found to undergo negative thermal expansion. All the observed low-temperature anomalies are assigned to the existence in MgB2 of a second group of carriers and its transition to the superconducting state at Tc2≈10?12 K.  相似文献   

14.
Zn2SnO4 (ZTO) is a stable semiconductor in ZnO–SnO2 system and important transparent conducting oxide (TCO) predominantly used in optoelectronic devices. ZTO thin films were prepared by RF magnetron sputtering using Zn2SnO4 ceramic target in this paper. The effects of annealing temperatures and oxygen contents on characterization of ZTO thin films were studied. The results show that ZTO thin films prepared by RF magnetron sputtering are amorphous with an optical band gap of 3.22 eV. After annealing at 650°C in Ar atmosphere for 40 min, ZTO films possess a spinel structure with an optical band gap of 3.62 eV. The atomic force microscope (AFM) data of morphology reveals that the surface roughness of films is about 2 nm. The results of energy dispersive spectrometer (EDS) show that the concentration ratio of Zn to Sn is in the range from 1.44 to 1.57. The results of Hall-effect-measurement system reveal that the resistivity of films varies from 102 to 10–1 Ωcm, carrier concentration is about 1017 cm–3, and mobility ranges from 100 to 101 cm2 v–1 s–1.  相似文献   

15.
We report synthesis, structure/micro-structure, resistivity under magnetic field [ρ(T)H], Raman spectra, thermoelectric power S(T), thermal conductivity κ(T), and magnetization of ambient pressure argon annealed polycrystalline bulk samples of MgB2, processed under identical conditions. The compound crystallizes in hexagonal structure with space group P6/mmm. Transmission electron microscopy (TEM) reveals electron micrographs showing various types of defect features along with the presence of 3–4 nm thick amorphous layers forming the grain boundaries of otherwise crystalline MgB2. Raman spectra of the compound at room temperature exhibited characteristic phonon peak at 600 cm-1. Superconductivity is observed at 37.2 K by magnetic susceptibility χ(T), resistivity ρ(T), thermoelectric power S(T), and thermal conductivity κ(T) measurements. The power law fitting of ρ(T) give rise to Debye temperature (ΘD) at 1400 K which is found consistent with the theoretical fitting of S(T), exhibiting Θ D of 1410 K and carrier density of 3.81 × 1028/m3. Thermal conductivity κ(T) shows a jump at 38 K, i.e., at Tc, which was missing in some earlier reports. Critical current density (Jc) of up to 105 A/cm2 in 1–2 T (Tesla) fields at temperatures (T) of up to 10 K is seen from magnetization measurements. The irreversibility field, defined as the field related to merging of M(H) loops is found to be 78, 68 and 42 kOe at 4, 10 and 20 K respectively. The superconducting performance parameters viz. irreversibility field (Hirr) and critical current density Jc(H) of the studied MgB2 are improved profoundly with addition of nano-SiC and nano-diamond. The physical property parameters measured for polycrystalline MgB2 are compared with earlier reports and a consolidated insight of various physical properties is presented.  相似文献   

16.
This paper reports on the results of investigations of the influence of irradiation of the two-band BCS superconductor MgB2 by electrons with an average energy $ \bar {\rm E} $ \bar {\rm E} ∼ 10 MeV at high doses (0 ≤ ϕt ≤ ∼2.5 × 1018 cm−2) on the temperature and width of the transition to the superconducting state, the temperature dependence of the electrical resistivity in the normal state, the crystal lattice parameters, and the diffraction line intensity. An increase in the electron irradiation dose ϕt leads to the following effects: a decrease in the critical temperature T c ; an increase in the width of the superconducting transition ΔT c ; and a decrease in the “residual electrical resistivity” ρ273 K40 K, in the parameters a and c of the hexagonal crystal lattice, and in the ratio between the diffraction line intensities I 110/I 100. From analyzing the results obtained, it has been established that the main type of radiation damages under irradiation of the BCS superconductor MgB2 by high-energy electrons is the formation of vacancies in the B sublattice, which leads to a narrowing of the large band gap Δσ on the Fermi surface.  相似文献   

17.
We report on the synthesis and measurements of the temperature dependences of the resistivity ρ, the penetration depth λ, and the upper critical magnetic field Hc2, for polycrystalline samples of dodecaboride ZrB12 and diboride MgB2. We conclude that ZrB12 behaves as a simple metal in the normal state with the usual Bloch-Grüneisen temperature dependence of ρ(T) and with a rather low resistive Debye temperature TR = 280 K (to be compared to TR = 900 K for MgB2). The ρ(T) and λ(T) dependences for these samples reveal a superconducting transition in ZrB12 at Tc = 6.0 K. Although a clear exponential λ(T) dependence in MgB2 thin films and ceramic pellets was observed at low temperatures, this dependence was almost linear for ZrB12 below Tc/2. These features indicate an s-wave pairing state in MgB2, whereas a d-wave pairing state is possible in ZrB12. In disagreement with conventional theories, we found a linear temperature dependence, of Hc2(T) for ZrB12 (Hc2(0) = 0.15 T).  相似文献   

18.
Using Scanning Tunneling Microscope at low temperature we explore the superconducting phase diagram in the π-band of the two-band superconductor MgB2. In this band the peculiar shape of the local tunneling spectra and their dynamics in the magnetic field reveal the complex character of the quasiparticle density of states (DOS). The gap in the DOS is first rapidly filled with states in raising the magnetic field up to 0.5 T and then slowly approaches the normal state value: the gap is observed up to 2 T. Such a change in the DOS dynamics suggests the existence of two terms in the DOS of the π-band: a first one, reflecting an intrinsic superconductivity in the band and a second one, originating from an inter-band coupling to the σ-band. Our findings allow a deeper understanding of the unique phase diagram of MgB2.  相似文献   

19.
The thermal expansion coefficient α(T) of MgB2 was measured at low temperatures both in a zero magnetic field and at H=36 kOe. As in the oxide HTSCs, a region of anomalous (negative) thermal expansion and a strong effect of magnetic field on α(T) were revealed. The results obtained indicate the anomalous properties of MgB2 and the oxide HTSCs to follow a common pattern.  相似文献   

20.
Thin films of ZnGa2O4:Mn2+ were deposited on quartz substrates using an rf magnetron sputtering technique. The sputtering target, ZnGa2O4 doped with 2 at. % manganese, was synthesized by a high temperature solid state reaction. Two different dopant sources were used to incorporate the dopant ions into the target, namely, manganese acetate and manganese oxide. The structural and optical properties of the thin films were studied using XRD, PL and transmission spectra. Polycrystalline ZnGa2O4:Mn with a spinel structure could be grown at an optimized substrate–target distance even at room temperature. No luminescence was observed in the as-deposited films grown using (CH3COO)2Mn as the dopant source in the target. Substrate heating or post-deposition annealing in the reducing ambient didn’t impart any luminescence to the films, ruling out the possibility of Mn2+ incorporation in the films. However, when using MnO as the manganese source in the target, the as-deposited films exhibited green photoluminescent emission (peak maximum at 508 nm) for substrate temperatures at and above 500 °C. This suggests that, in thin films, Mn incorporation and subsequent luminescent outcome is strongly influenced by the dopant source, which is quite different from the bulk phosphor behavior. PACS 81.15.Cd; 78.55.-m; 85.60.-q  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号