首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
多媒体程序是数据密集型应用,其核心代码部分占用了大部分的执行时间,因此,对多媒体应用程序的研究大多针对其核心代码部分.本文围绕多媒体应用程序的核心内层循环,分析其子字并行特点,提出了一种新颖的按位数据流分析方法,能够确定程序的内层循环,为进一步深入研究奠定基础.  相似文献   

2.
3.
4.
吴乐南 《电信科学》1995,11(11):15-22
本文综述多媒体硬件支撑技术有代表性的若干新进展:MPEG音、视频解压缩IC的芯片级集成,突破微机总线和接口传输瓶颈,多媒体板级产品的系统集成和平台硬软件的总体优化,外存储器的高速大容量化。  相似文献   

5.
PLX is a concise instruction set architecture (ISA) that combines the most useful features from previous generations of multimedia instruction sets with newer ISA features for high-performance, low-cost multimedia information processing. Unlike previous multimedia instruction sets, PLX is not added onto a base processor ISA, but designed from the beginning as a standalone processor architecture optimized for media processing. Its design goals are high performance multimedia processing, general-purpose programmability to support an ever-growing range of applications, simplicity for constrained environments where low power and low cost are paramount, and scalability for higher performance in less constrained multimedia systems. Another design goal of PLX is to facilitate exploration and evaluation of novel techniques in instruction set architecture, microarchitecture, arithmetic, VLSI implementations, compiler optimizations, and parallel algorithm design for new computing paradigms.Key characteristics of PLX are a fully subword-parallel architecture with novel features like wordsize scalability from 32-bit to 128-bit words, a new definition of predication, and an innovative set of subword permutation instructions. We demonstrate the use and high performance of PLX on some frequently-used code kernels selected from image, video, and graphics processing applications: discrete cosine transform, pixel padding, clip test, and median filter. Our results show that a 64-bit PLX processor achieves significant speedups over a basic 64-bit RISC processor and over IA-32 processors with MMX and SSE multimedia extensions. Using PLXs wordsize scalability feature, PLX-128 often provides an additional 2× speedup over PLX-64 in a cost-effective way. Superscalar or VLIW (Very Long Instruction Word) PLX implementations can also add additional performance through inter-instruction, rather than intra-instruction parallelism. We also describe the PLX testbed and its software tools for architecture and related research.Ruby B. Lee is the Forrest G. Hamrick Professor of Engineering and Professor of Electrical Engineering at Princeton University, with an affiliated appointment in the Computer Science department. She is the founder and director of the Princeton Architecture Laboratory for Multimedia and Security (PALMS). Her current research is in rethinking computer architecture for high-performance but low-cost security and multimedia processing. Prior to joining the Princeton faculty in 1998, Dr. Lee served as chief architect at Hewlett-Packard, responsible at different times for processor architecture, multimedia architecture, and security architecture for e-commerce and extended enterprises. She was a key architect in the initial definition and the evolution of the PA-RISC processor architecture used in HP servers and workstations. As chief architect for HPs multimedia architecture team, Dr. Lee led an inter-disciplinary team focused on architecture to facilitate pervasive multimedia information processing using general-purpose computers. She introduced innovative multimedia instruction set architecture (MAX and MAX-2) in microprocessors, resulting in the industrys first real-time, high-fidelity MPEG video and audio player implemented in software on low-end desktop computers. Dr. Lee also co-led an HP-Intel multimedia architecture team for IA-64, released in Intels Itanium microprocessors. Concurrent with full-time employment at HP, Dr. Lee also served as Consulting Professor of Electrical Engineering at Stanford University. Dr. Lee has a Ph.D. in Electrical Engineering and a M.S. in Computer Science, both from Stanford University, and an A.B. from Cornell University, where she was a College Scholar. She is a Fellow of ACM, a Fellow of IEEE, and a member of IS&T, Phi Beta Kappa, and Alpha Lambda Delta. She has been granted 115 U.S. and international patents, with several patent applications pending.A. Murat Fiskiran is a Ph. D. student at the Department of Electrical Engineering at Princeton University. He is a member of the Princeton Architecture Laboratory for Multimedia and Security (PALMS) and a Kodak Fellow. His research interests include computer architecture and computer security.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号