首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poor adherence to antihypertensive drug therapy is a well-recognized problem and can be assessed by mass spectrometry-based analyses of body fluids. However, contrary statements exist whether drug quantification in blood or qualitative screening in urine is more suitable. The present pilot study aimed to further elucidate the power of blood plasma drug concentrations for adherence monitoring by developing and validating a quantification procedure for nine antihypertensive drugs (amlodipine, bisoprolol, candesartan, canrenone, carvedilol, metoprolol, olmesartan, torasemide, and valsartan) in blood plasma using liquid–liquid extraction and an ultra-high-performance liquid chromatography-ion trap mass spectrometry analysis. The procedure should then be used for an adherence assessment and compared with the results of an established qualitative urine screening. Selectivity, carryover, matrix effect, accuracy, precision, dilution integrity, and stability were successfully validated, except for amlodipine. The applicability was demonstrated by analyzing 19 plasma samples containing 28 antihypertensive drugs and comparing the measured concentrations with calculated dose-dependent reference plasma concentration ranges. The interpretation of plasma concentrations was found to be more sophisticated and time-consuming than that of urine screening results, and adherence could not be assessed in two cases (10%) due to measured plasma concentrations below the lower limit of quantification. However, 14 out of 19 subjects were classified as adherent (75%) and three as nonadherent (15%), in contrast to 19 (100%) that were claimed to be adherent based on the results of the qualitative urine screening. Nevertheless, further data is needed to estimate whether plasma quantification is superior in terms of assessing adherence to antihypertensive medication.  相似文献   

2.
An enantioselective high-performance liquid chromatographic assay for the quantification of methadone in human and beagle plasma is described. The procedure involves extraction of methadone from alkalized plasma into hexane-isoamyl alcohol (99:1, v/v). Stereoselective separation was achieved with a silica column with covalently bound alpha 1-acid glycoprotein (Chiral-AGP) without any derivatization procedure. The detection wavelength was set at 215 nm. Using an internal standard provided reliable control of the extraction procedure as well as quantification of the enantiomers of methadone. The limit of quantification was found to be 2.5 ng/ml. The method was demonstrated to be sufficiently sensitive for stereoselective pharmacokinetic studies of methadone.  相似文献   

3.
Two different reversed-phase high-performance liquid chromatographic methods for the determination of aniracetam (I) and its metabolite N-anisoyl-GABA (II) in human plasma are described. The procedure for I involves direct injection of plasma samples spiked with the internal standard on a clean-up column followed by reversed-phase chromatography on a C18 column. The limit of quantification was 5 ng/ml, using a 200-microliters specimen of plasma. The mean inter-assay precision of the method up to 800 ng/ml was 3%. The procedure for II involved liquid-liquid extraction of II and the internal standard from plasma with ethyl acetate, and reversed-phase chromatography on a C18 column. The limit of quantification was 50 ng/ml using a 0.5-ml plasma specimen. The mean inter-assay precision up to 50 micrograms/ml was 6%. The applicability and accuracy of the methods were demonstrated by the analysis of over 1000 plasma samples from two bioavailability studies in healthy volunteers.  相似文献   

4.
We present a highly sensitive, rapid method for the determination of ruthenium originating from the investigational anti-cancer drug NAMI-A in human plasma ultrafiltrate, plasma, and urine. The method is based on the quantification of ruthenium by inductively coupled plasma mass spectrometry and allows quantification of 30 ng L(-1) ruthenium in plasma ultrafiltrate and urine, and 75 ng L(-1) ruthenium in human plasma, in 150 microL of matrix. The sample pretreatment procedure is straightforward and only involves dilution with appropriate diluents. The performance of the method, in terms of accuracy and precision, fulfilled the most recent FDA guidelines for bioanalytical method validation. Validated ranges of quantification were 30.0 to 1 x 10(4) ng L(-1) for ruthenium in plasma ultrafiltrate and urine and 75.0 to 1 x 10(4) ng L(-1) for ruthenium in plasma. The applicability of the method and its superiority to atomic-absorption spectrometry were demonstrated in two patients who were treated with intravenous NAMI-A in a phase I trial. The assay is now successfully used to support pharmacokinetic studies in cancer patients treated with NAMI-A.  相似文献   

5.
In order to show the possibilities of screen‐printed electrodes in HPLC detection, a method is presented for routine quantification of aminothiols in human plasma. It uses commercial gold screen‐printed electrodes and provides a rapid, simple and economical procedure with a disposable detector and without any additional electrode. By working at 98 : 2 (0.05 % trifluoroacetic acid: methanol) and 0.9 V, it allows us to determine cysteine (Cys), cysteinyl‐glycine (Cys‐Gly), and homocysteine (HCys) at μmol/L levels. The method was validated, and linearity range, detection and quantification limits, precision and accuracy were evaluated by external calibration and by using N‐acetylcysteine as internal standard, which exhibited better precision.  相似文献   

6.
《Analytical letters》2012,45(5):767-778
Abstract

A specific and sensitive high‐performance liquid chromatographic method was developed for the determination of metoclopramide in canine plasma. The procedure involves fast liquid–liquid extraction and analysis on an octadecyl silane (ODS) column. A preliminary pharmacokinetic study was performed by applying the developed method to a single oral administration of metoclopramide (MCP) to a dog. The validation method yielded good results regarding linearity, precision, accuracy, and specificity. The procedure is suitable for separation and quantification of MCP in canine plasma, enough to quantify 0.2 ng/ml when 0.5 ml of plasma is used. This assay procedure might be useful for the pharmacokinetic study of MCP in dogs.  相似文献   

7.
A simultaneous, selective, sensitive and rapid liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of gefitinib, erlotinib and afatinib in 250 μL samples of human blood plasma. Diluted plasma samples were extracted using a liquid‐phase extraction procedure with tert‐butyl methyl ether. The three drugs were separated by high‐performance liquid chromatography using a C18 column and an isocratic mobile phase running at a flow rate of 0.2 mL/min for 5 min. The drugs were detected using a tandem mass spectrometer with electrospray ionization using imatinib as an internal standard. Calibration curves were generated over the linear concentration range of 0.05–100 nm in plasma with a lower limit of quantification of 0.01 or 0.05 nm for all compounds. Finally, the validated method was applied to a clinical pharmacokinetic study in patients with nonsmall‐cell lung cancer (NSCLC) following the oral administration of afatinib. These results indicate that this method is suitable for assessing the risks and benefits of chemotherapy in patients with NSCLC and is useful for therapeutic drug monitoring for NSCLC treatment. As far as we know, this is the first report on LC‐MS/MS method for the simultaneous quantification of NSCLC tyrosine kinase inhibitor plasma concentrations including afatinib. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A reliable, high‐throughput and sensitive LC–MS/MS procedure was developed and validated for the determination of five tyrosine kinase inhibitors in human plasma. Following their extraction from human plasma, samples were eluted on a RP Luna®‐PFP 100 Å column using a mobile phase system composed of acetonitrile and 0.01 m ammonium formate in water (pH ~4.1) with a ratio of (50:50, v /v) flowing at 0.3 mL min−1. The mass spectrometer was operating with electrospray ionization in the positive ion multiple reaction monitoring mode. The proposed methodology resulted in linear calibration plots with correlation coefficients values of r 2 = 0.9995–0.9999 from concentration ranges of 2.5–100 ng mL−1 for imatinib, 5.0–100 ng mL−1 for sorafenib, tofacitinib and afatinib, and 1.0–100 ng mL−1 for cabozantinib. The procedure was validated in terms of its specificity, limit of detection (0.32–1.71 ng mL−1), lower limit of quantification (0.97–5.07 ng mL−1), intra‐ and inter assay accuracy (−3.83 to +2.40%) and precision (<3.37%), matrix effect and recovery and stability. Our results demonstrated that the proposed method is highly reliable for routine quantification of the investigated tyrosine kinase inhibitors in human plasma and can be efficiently applied in the rapid and sensitive analysis of their clinical samples.  相似文献   

9.
In order to enhance the sensitivity and to develop a faster direct method for plasma and urine quantification of racemic ketorolac, its metabolites (p-hydroxy-ketorolac and ketorolac glucuronides) and ketorolac enantiomers, we developed an extraction procedure based on solid-phase extraction combined with specific and fast chromatographic separation. Extraction and chromatography resulted in cleaner chromatograms without interfering compounds. In both plasma and urine, linearity of the standard curves for racemic ketorolac and p-hydroxy-ketorolac was validated in the concentration range 0.025–10 mg L?1, while for ketorolac enantiomers in the concentration range 0.025–5 mg L?1. The lower limit of quantification was two times lower than in earlier described methods. The developed method was suitable for direct quantification of racemic ketorolac, p-hydroxy-ketorolac and ketorolac enantiomers in plasma and urine samples in women at delivery and in postpartum, enabling us to document significant intra-individual differences in pharmacokinetics between these physiological states.  相似文献   

10.
Sensitive and reproducible methods for the determination of oxycodone, oxymorphone and noroxycodone in Ringer solution, rat plasma and rat brain tissue by liquid chromatography/mass spectrometry are described. Deuterated analogs of the substances were used as internal standards. Samples in Ringer solution were analyzed by direct injection of 10 microL Ringer solution diluted by an equal volume of water. The limit of quantification was 0.5 ng/mL and the method was linear in the range of 0.5-150 ng/mL for all substances. To analyze oxycodone and oxymorphone in rat plasma, 50 microL of plasma were precipitated with acetonitrile, and the supernatant was directly injected onto the column. To analyze oxycodone, oxymorphone and noroxycodone in rat plasma, 100 microL of rat plasma were subjected to a C18 solid-phase extraction (SPE) procedure, before reconstituting in mobile phase and injection onto the column. For both methods the limit of quantification in rat plasma was 0.5 ng/mL and the methods were linear in the range of 0.5-250 ng/mL for all substances. To analyze the content of oxycodone, oxymorphone and noroxycodone in rat brain tissue, 100 microL of the brain homogenate supernatant were subjected to a C18 SPE procedure. The limit of quantification of oxycodone was 20 ng/g brain, and for oxymorphone and noroxycodone 4 ng/g brain, and the method was linear in the range of 20-1000 ng/g brain for oxycodone and 4-1000 ng/g brain for oxymorphone and noroxycodone. All methods utilized a mobile phase of 5 mM ammonium acetate in 45% acetonitrile, and a SB-CN column was used for separation. The total run time of all methods was 9 min. The intra-day precision and accuracy were <11.3% and <+/-14.9%, respectively, and the inter-day precision and accuracy were <14.9% and <+/-6.5%, respectively, for all the concentrations and matrices described.  相似文献   

11.
《Mendeleev Communications》2021,31(6):867-868
S-[2-(2-Hydroxyethylthio)ethyl]-Cys-Pro-Phe (HETE–CPP) was synthesized in seven steps as a reference compound for the development of a procedure for its quantification in blood plasma in the OPCW biomedical proficiency tests.  相似文献   

12.
An advanced quantification method was developed with solid-phase extraction (SPE) and mass spectrometry (MS) determination for nafamostat, an unstable and highly polar drug, in human plasma. For unstable drugs with an ester group, the main analytical challenge is how to avoid the ester hydrolysis, and strong acid or alkaline conditions should be excluded during sample preparation. Considering that, we developed a relatively mild method with SPE for sample preparation without strong acid and alkaline treatment, which was optimized with different pHs and salt concentrations in phosphate-buffered saline treatment. The results indicated that pH 5 gave the most efficient extraction and 0.1 M salt concentration enhanced the extraction the most, with a minor effect on MS monitoring. The extraction method effectively avoided drug hydrolysis and achieved good drug enrichment over 82.2%. The linear range of quantification was 1.25–160 ng mL−1. The stability of the drug in sample treatment was fully validated according to the sample processing procedure, including the stability in fresh blood, mobile phase, plasma and acidic methanol, and the results indicated that the drug remained stable during the whole sample preparation. Compared with a previous isotope-labeling method, more accurate and specific quantification of plasma concentration was achieved with liquid chromatography–electrospray ionization MS determination. With use of our method, nafamostat mesilate pharmacokinetics in 30 Chinese healthy volunteers was investigated with three doses via intravenous-drip infusion. The pharmacokinetic parameters were also estimated and compared with those of Japanese volunteers (slightly lower plasma concentration and longer terminal elimination half-life for Chinese volunteers). The difference in the pharmacokinetics may be ascribed to the quantification method, because previous isotope labeling may have overestimated the parent drug.  相似文献   

13.
A rapid, sensitive and specific method for quantifying clonazepam in human plasma using diazepam as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using a hexane/diethylether (20 : 80, v/v) solution. The extracts were analysed by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS-MS). Chromatography was performed on a Jones Genesis C8 4 microm analytical column (100 x 2.1 mm i.d.). The method had a chromatographic run time of 3.0 min and a linear calibration curve over the range 0.5-50 ng/ml (r2 > 0.9965). The limit of quantification was 0.5 ng/ml. This HPLC/MS/MS procedure was used to assess the bioequivalence of two clonazepam 2 mg tablet formulations (clonazepam test formulation from Ranbaxy Laboratories Ltd and Rivotril from Roche Laboratórios Ltda as standard reference formulation).  相似文献   

14.
A reversed-phase HPLC method for the analysis of cephalexin (7-[(aminophenylacetyl)amino]-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid) by isocratic separation is described. A comparison is made between the ultrafiltration land the extraction procedure developed in our laboratory. The extraction procedure, based on the deproteinization of plasma with perchloric acid followed by the extraction with dichloroethane and separation of cephalexin on a reversed phase column, gave better recovery. Quantitative validation of our method has been performed by an external standard technique. The relative standard deviations were between 1.1 and 1.9% in the within-day assay and between 1.2 and 2.2% in the inter-day assay. The limit of detection was 0.14ug/ml and the limit of quantification was 0.28ug/ml. This method is rapid, sensitive, simple, and reproducible. The LC MS/MS technique was successfully used for identification and quantification of cephalexin in human plasma samples.  相似文献   

15.
A sensitive and selective liquid chromatographic tandem mass spectrometric (LC–MS–MS) method was developed for simultaneous identification and quantification of tamsulosin and dutasteride in human plasma, which was well applied to clinical study. The method was based on liquid–liquid extraction, followed by an LC procedure with a Gemini C-18, 50 mm × 2.0 mm (3 μm) column and using methanol:ammonium formate (97:3, v/v) as the mobile phase. Protonated ions formed by a turbo ionspray in positive mode were used to detect analytes and internal standard. MS–MS detection was by monitoring the fragmentation of 409.1 → 228.1 (m/z) for tamsulosin, 529.3 → 461.3 (m/z) for dutasteride and 373.2 → 305.3 (m/z) for finasteride (IS) on a triple quadrupole mass spectrometer. The lower limit of quantification for both tamsulosin and dutasteride was 1 ng mL?1. The proposed method enables the unambiguous identification and quantification of tamsulosin and dutasteride for clinical drug monitoring.  相似文献   

16.

In order to enhance the sensitivity and to develop a faster direct method for plasma and urine quantification of racemic ketorolac, its metabolites (p-hydroxy-ketorolac and ketorolac glucuronides) and ketorolac enantiomers, we developed an extraction procedure based on solid-phase extraction combined with specific and fast chromatographic separation. Extraction and chromatography resulted in cleaner chromatograms without interfering compounds. In both plasma and urine, linearity of the standard curves for racemic ketorolac and p-hydroxy-ketorolac was validated in the concentration range 0.025–10 mg L−1, while for ketorolac enantiomers in the concentration range 0.025–5 mg L−1. The lower limit of quantification was two times lower than in earlier described methods. The developed method was suitable for direct quantification of racemic ketorolac, p-hydroxy-ketorolac and ketorolac enantiomers in plasma and urine samples in women at delivery and in postpartum, enabling us to document significant intra-individual differences in pharmacokinetics between these physiological states.

  相似文献   

17.
Oxcarbazepine (OX), a new antiepileptic, may lead to unwanted side-effects or even life-threatening intoxications after overdose. Therefore, a validated liquid chromatographic/mass spectrometric (LC/MS) assay was developed for the quantification of OX and its pharmacologically active dihydro metabolite (dihydrooxcarbazepine, DOX, often named 10-hydroxycarbazepine). OX and DOX were extracted from plasma by the authors' standard liquid/liquid extraction and were separated on a Merck LiChroCART column with Superspher 60 RP Select B as the stationary phase. Gradient elution was performed using aqueous ammonium formate and acetonitrile. The compounds were quantified in the selected-ion monitoring mode using atmospheric pressure chemical ionization electrospray LC/MS. The assay was fully validated. It was found to be selective. The calibration curves were linear from 0.1 to 50 mg l(-1) for OX and DOX. Limits of quantification were 0.1 mg l(-1) for OX and DOX. The absolute recoveries were between 60 and 86%. The accuracy and precision data were within the required limits. The analytes in frozen plasma samples were stable for at least 1 month. The method was successfully applied to several authentic plasma samples from patients treated or intoxicated with OX. The measured therapeutic plasma levels ranged from 1 to 2 mg l(-1) for OX and from 10 to 40 mg l(-1) for DOX. The validated LC/MS assay proved to be appropriate for quantification of OX and DOX in plasma for clinical toxicology and therapeutic drug monitoring purposes. The assay is part of a general analysis procedure for the isolation, separation and quantification of various drugs and for their full-scan screening and identification.  相似文献   

18.
Ding  Chenxu  Wang  Lingyun  Tian  Chunliang  Li  Yulin  Sun  Zhiwei  Wang  Honglun  Suo  Yourui  You  Jinmao 《Chromatographia》2008,67(11):893-903

A sensitive and selective liquid chromatographic tandem mass spectrometric (LC–MS–MS) method was developed for simultaneous identification and quantification of tamsulosin and dutasteride in human plasma, which was well applied to clinical study. The method was based on liquid–liquid extraction, followed by an LC procedure with a Gemini C-18, 50 mm × 2.0 mm (3 μm) column and using methanol:ammonium formate (97:3, v/v) as the mobile phase. Protonated ions formed by a turbo ionspray in positive mode were used to detect analytes and internal standard. MS–MS detection was by monitoring the fragmentation of 409.1 → 228.1 (m/z) for tamsulosin, 529.3 → 461.3 (m/z) for dutasteride and 373.2 → 305.3 (m/z) for finasteride (IS) on a triple quadrupole mass spectrometer. The lower limit of quantification for both tamsulosin and dutasteride was 1 ng mL−1. The proposed method enables the unambiguous identification and quantification of tamsulosin and dutasteride for clinical drug monitoring.

  相似文献   

19.
Cefuroxime is a second-generation cephalosporin used against different kinds of bacterial infections. To be able to optimize the dosing it is necessary to characterize the pharmacokinetics of cefuroxime which requires a selective and sensitive analytical method for cefuroxime in plasma or serum. A new rapid liquid chromatography/electrospray tandem mass spectrometry (LC/MS/MS) method, using cefotaxime as internal standard, was developed for analysis of cefuroxime in human serum. The work-up procedure consisted of protein precipitation with acetonitrile/cefotaxime, and after centrifugation the supernatant was dissolved in mobile phase. The sample was injected on a SB-CN column and the detection was performed using tandem mass spectrometry (MS/MS). The limit of quantification was determined to 0.025 microg/mL. The method was linear in the range 0.025-50 microg/mL with a coefficient of correlation >0.999. The limit of quantification and intra-day variability were found to be the same for plasma samples, which indicates that the method is valid for serum as well as plasma samples.  相似文献   

20.
A gas chromatography-selected ion monitoring procedure with chemical ionization is described for the determination of bromovalerylurea (BVU) in human plasma. BVU was extracted with ether after addition of 2-bromo-2-methylpropylurea as an internal standard. The lower limit of BVU quantification by this method was 2 ng/0.1 ml plasma volume. This procedure was used to determine the sequential plasma levels of BVU in a human volunteer following a single oral dose of a commercial analgesic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号