首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
Described herein is the Pd(0)-catalyzed coupling cyclization reaction of 1,2-allenyl ketones with organic halides leading efficiently and conveniently to not only 2,3,4- and 2,3,5-trisubstituted furans but also 2,3,4,5-tetrasubstituted furans. Furthermore, this method showed high substituent-loading capability and tolerance of various substituents. The reactions of 1,2-allenyl ketones 1 e, 1 p, 1 q, and deuterated [D]1 c were performed for a mechanistic study, which demonstrated that instead of an enolization pathway, the reaction may proceed via the intermediacy of dienolate palladium and intramolecular nucleophilic attack on the pi-allyl palladium intermediate by the carbonyl oxygen.  相似文献   

8.
The reaction of the bis(ethylene) complex [Tp(Me(2) )Ir(C(2)H(4))(2)] (1) (Tp(Me(2) ): hydrotris(3,5-dimethylpyrazolyl)borate) with two equivalents of dimethyl acetylenedicarboxylate (DMAD) in CH(2)Cl(2) at 25 degrees C gives the hydride-alkenyl species [Tp(Me(2) )IrH{C(R)=C(R)C(R)=C(R)CH=CH(2)}] (2, R: CO(2)Me) in high yield. A careful study of this system has established the active role of a number of intermediates en route to producing 2. The first of these is the iridium(I) complex [Tp(Me(2) )Ir(C(2)H(4))(DMAD)] (4) formed by substitution of one of the ethylene ligands in 1 by a molecule of DMAD. Complex 4 reacts further with another equivalent of the alkyne to give the unsaturated metallacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(R)=C(R)}], which can be trapped by added water to give adduct 7, or can react with the C(2)H(4) present in solution generating complex 2. This last step has been shown to proceed by insertion of ethylene into one of the Ir--C bonds of the metallacyclopentadiene and subsequent beta-H elimination. Complex 1 reacts sequentially with one equivalent of DMAD and one equivalent of methyl propiolate (MP) in the presence of water, with regioselective formation of the nonsymmetric iridacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(H)=C(R)}(H(2)O)] (9). Complex 9 reacts with ethylene giving a hydride-alkenyl complex 10, related to 2, in which the C(2)H(4) has inserted regiospecifically into the Ir--C(R) bond that bears the CH functionality. Heating solutions of either 2 or 10 in CH(2)Cl(2) allows the formation of the allyl species 3 or 11, respectively, by simple stereoselective migration of the hydride ligand to the Calpha alkenyl carbon atom and concomitant bond reorganization of the resulting organic chain. All the compounds described herein have been characterized by microanalysis, IR and NMR spectroscopy, and for the case of 3, 7, 7CO, 8NCMe, 9, 9NCMe, and 10, also by single-crystal X-ray diffraction studies.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
The reactivity of a range of pyridone and pyrazinone derivatives towards alkynes in the presence of cyclopentadienylcobaltbis(ethene) has been investigated. Depending on the nature of the substrates, [2+2+2]- or [2+2] cycloaddition, C-H, or N-H activation may occur. In the case of pyridones, the first three predominated with N-protected derivatives, whereas substrates containing N-H bonds followed an N-H activation pathway. The [2+2+2] cycloaddition of an N-butynylisoquinolone was applied successfully to the total synthesis of anhydrolycorinone. Pyrazinone substrates showed similar patterns of reactivity.  相似文献   

18.
19.
20.
Propargylamines can be obtained from secondary amines and terminal alkynes in chlorinated solvents by a three‐ and two‐component synthesis catalyzed by gold compounds and nanoparticles (Au‐NP) under mild conditions. The use of dichloromethane allows for the activation of two C? Cl bonds and a clean transfer of the methylene fragment to the final product. The scope of the reaction as well as the influence of different gold(III) cycloaurated complexes and salts has been investigated. The involvement of gold nanoparticles generated in situ in the process is discussed and a plausible reaction mechanism is proposed on the basis of the data obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号