首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for capillary electrophoretic enantiomeric separation of a racemic clenbuterol has been established with hydroxypropyl-β-cyclodextrin as the chiral selector. General equations and data analysis are presented to relate mobility to the equilibrium constants in simple binding equilibria and used to determine binding constants and thermodynamic parameters for host-guest complexation of clenbuterol enantiomers with hydroxypropyl-β-cyclodextrin as a selector. The effects of β-cyclodextrin type and concentration, buffer type, concentration and pH, as well as separation voltage and capillary temperature were investigated in detail. A maximal resolution of 6.78 was obtained. The binding constants of the host-guest complex of clenbuterol enantiomers with hydroxypropyl-β-cyclodextrin, K R-CD and K S-CD are 22.50 and 43.09 l mol-1, respectively.  相似文献   

2.
A good chiral discrimination of lansoprazole (LAN) enantiomers was realized by a chiral N,N′-dioxide-Sc(III) complex, which was based on a fluorescent method through an ‘off-on’ process. The chiral ligand, N,N′-dioxide, coordinated with scandium(III) triflate forming an organic-metal complex as a chiral selector. Then the LAN enantiomers reacted with the selector and generated different signals in fluorescence. A distinct enantiomeric difference was observed with good repeatability, low detection limit, good linear range, and highly enantiomeric selectivity. At last, this study had offered a quantitative measurement of the enantiomer composition.  相似文献   

3.
Sami El Deeb 《Chromatographia》2010,71(9-10):783-787
An LC method was developed and validated for the enantioselective separation and enantiomeric impurity quantitation of atenolol. Separation of the atenolol enantiomers on the Chirobiotic V2 (150 mm × 4.6 mm, 5 μm) column was best achieved using a ternary mobile phase of methanol–acetonitrile-triethylamine acetate 0.5% (w/v), pH 4.5 in a ratio of (45:50:5; v/v/v). Good resolution value of R s  = 3 was obtained at a flow rate of 1 mL min?1 within a total run time of less than 40 min. Peak identification was achieved using the standard reference of individual enantiomers. The peak of the impurity was eluted in front of the peak of the main enantiomer. Detection was performed by UV at 226 nm. Within and between day’s repeatabilities for both retention time and peak area were investigated at three concentration levels and found to be low. The method was also found to be efficient for the determination of atenolol enantiomeric impurity. An impurity quantitation level of (R)-atenolol down to 0.08% relative to the main enantiomer (S)-atenolol was found possible.  相似文献   

4.
Nonlinear effects caused by molecular association of enantiomers in non-racemic mixtures can cause unexpected effects in chiroptics, NMR spectroscopy, homogeneous catalysis, and chromatography. Herein we present a theoretical model to simulate and verify unusual elution orders of enantiomers on an achiral stationary phase doped with a small amount of a chiral selector or achiral columns coupled with columns doped with a chiral selector. Scenarios with strong, medium, and weak associations of enantiomers, different separation efficiencies typical for flash chromatography and liquid chromatography, and the influence of the enantioselectivity of the chiral selector on the complex equilibria have been investigated. The findings presented here are of importance for the validation of the determination of enantiomeric ratios in not fully separated elution zones as well as for the preparative separation of non-racemic enantiomeric mixtures on chiral stationary phases bonded to achiral matrices.  相似文献   

5.
CE methods with capacitively coupled contactless conductivity detection (C4D) were developed for the enantiomeric separation of the following stimulants: amphetamine (AP), methamphetamine (MA), ephedrine (EP), pseudoephedrine (PE), norephedrine (NE) and norpseudoephedrine (NPE). Acetic acid (pH 2.5 and 2.8) was found to be the optimal background electrolyte for the CE‐C4D system. The chiral selectors, carboxymethyl‐β‐cyclodextrin (CMBCD), heptakis(2,6‐di‐O‐methyl)‐β‐cyclodextrin (DMBCD) and chiral crown ether (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid (18C6H4), were investigated for their enantioseparation properties in the BGE. The use of either a single or a combination of two chiral selectors was chosen to obtain optimal condition of enantiomeric selectivity. Enantiomeric separation of AP and MA was achieved using the single chiral selector CMBCD and (hydroxypropyl)methyl cellulose (HPMC) as the modifier. A combination of the two chiral selectors, CMBCD and DMBCD and HPMC as the modifier, was required for enantiomeric separation of EP and PE. In addition, a combination of DMBCD and 18C6H4 was successfully applied for the enantiomeric separation of NE and NPE. The detection limits of the enantiomers were found to be in the range of 2.3–5.7 μmol/L. Good precisions of migration time and peak area were obtained. The developed CE‐C4D method was successfully applied to urine samples of athletes for the identification of enantiomers of the detected stimulants.  相似文献   

6.
In the present study, an in silico methodology able to define the binding modes adopted by carnosine enantiomers in the setting of the chiral recognition process is described. The inter‐ and intramolecular forces involved in the enantioseparation process with the Teicoplanin A2‐2 chiral selector and carnosine as model compound are successfully identified. This approach fully rationalizes, at a molecular level, the (S) < (R) enantiomeric elution order obtained under reversed‐phase conditions. Consistent explanations were achieved by managing molecular dynamics results with advanced techniques of data analysis. As a result, the time‐dependent identification of all the interactions simultaneously occurring in the chiral selector‐enantiomeric analyte binding process was obtained. Accordingly, it was found that only (R)‐carnosine is able to engage a stabilizing charge–charge interaction through its ionized imidazole ring with the carboxylate counter‐part on the chiral selector. Instead, (S)‐carnosine establishes intramolecular contacts between its ionized functional groups, that limit its conformational freedom and impair the association with the chiral selector unit.  相似文献   

7.
Anionic polysaccharide dextran sulfate (DxS) was successfully employed as chiral selector for the enantioseparation of two antiparkinsonian drugs, including rotigotine and trihexyphenidyl (THP), by electrokinetic chromatography (EKC). The enantioseparation was performed under normal and reversed polarity modes and reversed enantiomer migration order was achieved under two modes. The parameters affecting the chiral separation, such as buffer pH, DxS concentration, organic additive, and temperature were investigated and optimized. Reversed polarity mode provided better separation for the two drugs. The optimized conditions for the enantioseparation under reversed polarity mode were 2.0% (w/v) DxS, 10 mM phosphate buffer, pH 2.5 with an applied voltage of ?30 kV at 25 °C. Direct UV detection was performed at 200 nm. Under the optimal conditions, rotigotine and THP enantiomers were enantioresolved in 40 min with the resolution of 2.0 and 5.8, respectively. The analytes could be enantioseparated using DxS of molecular mass 1,000,000 or 500,000. It was inferred that the electrostatic, hydrophobic, and steric interactions may be involved in the chiral separation mechanism in this study.  相似文献   

8.
Electrokinetic chromatography (EKC) was employed to achieve the enantiomeric separation of a group of chiral 1,4-dihydropyridines (DHPs) with pharmacological activity. Micelles of bile salts alone or mixed with neutral cyclodextrins, micelles of sodium dodecyl sulfate (SDS) mixed with neutral cyclodextrins, and anionic cyclodextrin derivatives, i.e., carboxymethyl-gamma-cyclodextrin (CM-gamma-CD), carboxymethyl-beta-cyclodextrin (CM-beta-CD), and succinylated beta-cyclodextrin (Succ-beta-CD), were employed as pseudostationary phases. The enantiomeric separation ability of these chiral selectors with respect to DHPs was studied in different experimental conditions. CM-beta-CD was shown to be the best chiral selector to perform the enantiomeric separation of DHPs by EKC. Next, the influence of the CM-beta-CD concentration, the pH and nature of the buffer, the temperature, and the applied voltage on the enantiomeric resolution of DHPs was studied. The use of a 50 mM ammonium acetate buffer, pH 6.7, 25 mM in CM-beta-CD together with an applied voltage of 15 or 20 kV, and a temperature of 15 degrees C enabled the individual enantiomeric separation of twelve DHPs, each one into its two enantiomers, and their separation in multicomponent mixtures of up to six DHPs into all their enantiomers.  相似文献   

9.
An LC method was developed and prevalidated for the enantiomeric purity determination of S‐amlodipine in polar organic solvent chromatography using a chlorine‐containing cellulose‐based chiral stationary phase (CSP). The concentration of formic acid (FA) (0.01–0.2%) in the mobile phase containing acetonitrile as the main solvent was found to influence the elution order of amlodipine enantiomers as well as the enantioresolution. A reversal of the enantiomer elution order of amlodipine was only observed with chiral stationary phases with both electron‐withdrawing (chloro) and electron‐donating groups (methyl) on the phenyl moieties of the chiral selector, namely cellulose tris(3‐chloro‐4‐methylphenylcarbamate) and cellulose tris(4‐chloro‐3‐methylphenylcarbamate). The highest enantioresolution (Rs: 4.1) value was obtained at the lowest FA concentration (0.01%) using cellulose tris(4‐chloro‐3‐methylphenylcarbamate) as the chiral selector and the enantiomeric impurity, R‐amlodipine, eluted first under these conditions. Therefore, the mobile phase selected for the prevalidation of the method consisted of ACN/0.1% DEA/0.01% FA and the temperature was set at 25°C. The method was prevalidated by means of the strategy based on the total measurement error and the accuracy profile. The method was found to be selective and the limit of quantification was found to be about 0.05% for R‐amlodipine, while the limit of detection was close to 0.02%.  相似文献   

10.
EKC using a neutral CD as chiral selector was applied in this work to the development of a method enabling the enantiomeric separation of ketoconazole and terconazole antifungals. The influence of different experimental conditions such as temperature, CD concentration, pH, and nature and concentration of the buffer on the enantiomeric resolution of the compounds studied was investigated. The use of 10 mM heptakis-(2,3,6-tri-O-methyl)-beta-CD in a 100 mM phosphate buffer (pH 3.5) with a temperature of 15 degrees C allowed the separation of the enantiomers of ketoconazole and terconazole with high resolution (R(s) > 2.0). The rapid separation of ketoconazole enantiomers with an analysis time less than 3 min was carried out after fitting some experimental parameters. The developed method was applied to the determination of ketoconazole in different pharmaceutical formulations.  相似文献   

11.
Recycling high‐speed counter‐current chromatography was successfully applied to the preparative separation of oxybutynin enantiomers. The two‐phase solvent system consisted of n‐hexane, methyl tert‐butyl ether, and 0.1 mol/L phosphate buffer solution (pH = 5.0) with the volume ratio of 6:4:10. Hydroxypropyl‐β‐cyclodextrin was employed as the chiral selector. The influence of factors on the chiral separation process, including the concentration of chiral selector, the equilibrium temperature, the pH value of the aqueous phase were investigated. Under optimum separation conditions, 15 mg of oxybutynin racemate was separated with the purities of both the enantiomers over 96.5% determined by high‐performance liquid chromatography. Recovery for the target compounds reached 80–82% yielding 6.00 mg of (R)‐oxybutynin and 6.15 mg of (S)‐oxybutynin. Technical details for recycling elution mode were discussed.  相似文献   

12.
手性配位体交换流动相添加剂法拆分对映体   总被引:7,自引:0,他引:7  
李新  曾苏 《色谱》1996,14(5):354-359
综述了手性配合基交换色谱法通常采用三种手性相系统中的流动相添加剂方法。主要内容有:(A)手性配合基交换机制,给出了描述对映体对在色谱系统中的保留时间和分离选择性的公式,包括手性选择剂在固定相和流动相中的各种不同情况。公式表明整个色谱往系统的对映体选择性不同于溶液中所存在的选择剂与被选择物作用的情况;(B)影响配合交换的参数,讨论了金属离子、金属离子/配位体比率、金属离子络合物浓度、固定相、流动相pH、洗脱顺序、有机调节剂、离子对试剂、流动相离子强度、温度、立体选择性和手性交互识别;(C)应用。  相似文献   

13.
毛细管区带电泳法研究肾上腺素类药物的手性分离   总被引:9,自引:1,他引:8  
使用β-环糊精(β-CD)及β-CD-羧甲基(CM-β-CD)作为手性选择剂,采用毛细管区带电泳法(CZE)对去甲肾上腺素、肾上腺素和异丙肾上腺素的手性分离进行了研究。对影响这类药物手性分离的主要因素〔手性选择剂、背景电解质(BGE)、分离体系的酸度和温度〕进行了讨论,并对手性识别机理进行了探讨。  相似文献   

14.
The four stereoisomers of itraconazole were resolved for the first time by EKC using a CD as chiral selector. A study on the enantiomeric separation ability of different neutral CDs was carried out. Heptakis-2,3,6-tri-O-methyl-beta-CD was shown to provide the highest values for the enantiomeric resolution. The influence of some experimental conditions, such as pH, chiral selector concentration, and temperature, on the enantiomeric separation was also studied. The use of a 100 mM phosphate buffer (pH 2.5), 30 mM in heptakis-2,3,6-tri-O-methyl-beta-CD together with an applied voltage of 30 kV and a temperature of 20 degrees C enabled the separation of the enantiomers of itraconazole with high resolutions (Rs > 3.0). Finally, the method was validated and successfully applied to the quantitation of itraconazole in three pharmaceutical formulations.  相似文献   

15.
Twelve new azole compounds were synthesized through an ene reaction involving methylidene heterocycles and phenylmaleimide, producing four oxazoles, five thiazoles, and one pyridine derivative, and ethyl glyoxylate for an oxazole and a thiazole compound. The twelve azoles have a stereogenic center in their structure. Hence, a method to separate the enantiomeric pairs, must be provided if any further study of chemical and pharmacological importance of these compounds is to be accomplished. Six chiral stationary phases were assayed: four were based on macrocyclic glycopeptide selectors and two on linear carbohydrates, i.e., derivatized maltodextrin and amylose. The enantiomers of the entire set of new chiral azole compounds were separated using three different mobile phase elution modes: normal phase, polar organic, and reversed phase. The most effective chiral stationary phase was the MaltoShell column, which was able to separate ten of the twelve compounds in one elution mode or another. Structural similarities in the newly synthesized oxazoles provided some insights into possible chiral recognition mechanisms.  相似文献   

16.
This study reports on the development and preliminary validation of a capillary electrochromatographic (CEC) method for the enantioselective impurity profiling of D-ephedrine. As chiral selector a novel low-molecular-weight strong chiral cation exchanger, based on penicillamine sulfonic acid, immobilized on thiol-modified silica particles (3.5 microm) was employed. Under optimized conditions, the ephedrine enantiomers were separated on this chiral stationary phase (CSP) with an enantioselectivity of 1.11, an average efficiency of 321 550 plates per meter, and a resolution value of 4.77. A preliminary method validation was carried out to demonstrate the applicability of CEC for enantiomeric excess (ee) determination. Run-to-run repeatabilities (n = 5) reached relative standard deviation values (RSD) of 0.18 and 0.19% for the migration times of L- and D-enantiomer, respectively, 0.3% for the resolution, and about 0.9% for the peak efficiencies. An approach called self-internal standard method was utilized to measure a standard calibration curve. Excellent linearity with a correlation coefficient of R(2) = 0.9998 was found for samples with concentrations in the range between 0.03 and 5 mg.mL(-1) D-ephedrine spiked with L-ephedrine at a constant concentration of 0.2 mg.mL(-1). The high loadability of the investigated CSP and good peak sensitivity allowed us to determine less than 0.1% enantiomeric impurity with good accuracy. The limit of detection (LOD) for the L-enantiomer in a 3 mg.mL(-1) D-ephedrine solution was found to be 0.035% (S/N = 3) and the limit of quantitation (LOQ) 0.058% (S/N = 5). For L-ephedrine samples the strong cation-exchange (SCX)-type CSP with opposite configuration was utilized so that the enantiomeric impurity eluted before the main component peak yielding similar results in terms of separation and validation. Based on these results, the presented nonaqueous CEC methods are assessed as principally suitable for ee determination of ephedrine in terms of repeatability and method sensitivity.  相似文献   

17.
New orthoconic antiferroelectric liquid crystalline materials were synthesised and characterised in their racemic forms and as (S) enantiomers. The materials possess oligo-methylene spacers of different lengths in semi-fluorinated achiral chains and lateral substitution by fluorine at two different positions of the molecular core. For comparison purposes, analogical materials without fluorine lateral substitutions were also prepared. Polysaccharide chiral stationary phases based on two different chiral selectors were used for the separation of the enantiomers of the individual racemic mixtures by high-performance liquid chromatography. A baseline separation of (S) and (R) enantiomers was obtained for four of the six studied liquid crystalline materials. Two of the materials were partially separated under the optimised separation conditions. The elution order of the individual enantiomers in the racemic mixtures was successfully assigned, as pure (S) enantiomers of all the studied materials were available. Both the position of the fluorine atom within the molecular core and the size of the achiral moiety had significant effects on the separation of the individual enantiomers of the studied compounds. Moreover, it was also found that the structure of the chiral stationary phase selector significantly influenced the enantiomeric resolution.  相似文献   

18.
Chiral recognition of enantiomers by host compounds is one of the most challenging topics in modern host-guest chemistry. Amongst the well-established methods, mass spectrometry (MS) is increasingly used nowadays, due to its low detection limit, short analysis time, and suitability for analyzing mixtures and for studying chiral effects in the gas phase. The development of electrospray-ionization (ESI) techniques provides an invaluable tool to study, in the gas phase, diastereoisomeric complex ions prepared from enantiomer ions and a chiral selector. This paper reports on an ESIMS and ESIMSMS study of the molecular mechanisms that intervene in the chiral-recognition phenomena observed between amino acids and a chiral crown ether. The modified crown ether, namely (+)-([18]crown-6)-2,3,11,12-tetracarboxylic acid, is used as the chiral selector when covalently bound on a stationary phase in liquid chromatography. This study was stimulated by the fact that, except with threonine and proline, consistent elution orders were observed, which indicates that the D enantiomers interact more strongly with the chiral selector than the L enantiomers. For proline, the lack of a primary amino group is likely to be responsible for the nonresolution of the two forms, whereas the second stereogenic center on threonine could explain the reversed elution order. In light of those observations, we performed mass spectrometry experiments to understand more deeply the enantiomeric recognition phenomena, both in solution by the enantiomer-labeled guest method and in the gas phase by gas-phase ligand-exchange ion/molecule reactions. The results have been further supported by quantum chemical calculations. One of the most interesting features of this work is the identification of a nonspecific interaction between proline and the crown ether upon ESIMS analysis.  相似文献   

19.

The separation of enantiomers of 10 chiral antimycotic drugs was studied on polysaccharide-based chiral columns with polar organic mobile phases. The emphasis was placed on some interesting examples of enantiomer elution order reversal observed depending on the chemistry of the chiral selector, separation temperature, major component, as well as the minor additive in the mobile phase. In particular, it was found that the elution order of enantiomers of chiral drug terconazole was opposite on cellulose- and amylose-based columns with the same pendant group. The affinity pattern of enantiomers of another chiral drug bifonazole was opposite towards to two amylose-based chiral selectors with different pendant groups. The affinity pattern of terconazole enantiomers also changed on some columns when the alcohol-based mobile phase was replaced with acetonitrile. An interesting effect of the minor acidic (formic acid) additives to the mobile phase on the affinity pattern of terconazole enantiomers was observed on Cellulose-2 and Cellulose-4 columns. In addition, a reversal of elution order of bifonazole enantiomers was observed on Amylose-2 column by variation of a separation temperature.

  相似文献   

20.
The different activity and toxicity that the enantiomers of agrochemicals may have requires the development of stereoselective analytical methodologies enabling the individual determination of each enantiomer. The aim of this work was to develop the first Electrokinetic Chromatography methodology enabling the simultaneous enantiomeric separation of carfentrazone-ethyl herbicide and its hydrolysis metabolite carfentrazone. The use of an anionic cyclodextrin as chiral selector (captisol at 2.5% (w/v)) in a 25 mM acetate buffer, at a temperature of 30 °C, and an applied voltage (reverse polarity) of −30 kV, allowed the simultaneous separation of the four enantiomers of the two compounds studied in 6.8 min with enantiomeric resolutions of 5.0 for carfentrazone-ethyl and 5.1 for carfentrazone. Analytical characteristics of the developed method were evaluated and found adequate to achieve the quantitation of carfentrazone-ethyl and carfentrazone. Analysis of a commercial herbicide formulation showed the potential of the method for the quality control of these agrochemical products. Degradation studies for carfentrazone-ethyl revealed that no significant degradation took place in cleaned sand samples while a significant but not stereoselective degradation took place in soils for the whole period of time considered (seven days).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号