首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The interaction between disturbances in the hypersonic boundary layer on impermeable and porous surfaces is considered within the framework of weakly-nonlinear stability theory. It is established that on the impermeable surface nonlinear interactions between different waves (acoustic and vortex) occur in the parametric resonance regime. The role of pumping wave is played by a plane acoustic wave. The nonlinear interactions take place over a wide frequency range and can lead to the packet growth of Tollmien-Schlichting waves. On the porous surface the analogous interactions are fairly weak and result in a slight decay of the acoustic mode and a slight amplification of the vortex mode. This leads to the dragging out of the laminar flow regime and the regions of linear disturbance growth. In this situation the low-frequency spectrum of the vortex modes may be filled on account of the nonlinear processes occurring in the three-wave systems between the vortex components.  相似文献   

2.
Although the suppressed instability of supersonic free shear layer flow has been documented by many investigators, the underlying physics are still ambiguous. In the present study, numerical simulations were performed to cast physical insight into the two-dimensional large-scale structure which is organized in a supersonic free shear layer. It is found that an acoustic interaction of the disturbed shear layer with a flow channel wall or another shear layer is indispensable to generate the organized structure. The undisturbed vorticity layer is deformed into a traveling wavy one. As the flow Mach number increases, its degree of deformation decreases so that the formation of shock waves embedded in the structure is avoided. Received 4 August 1995 / Accepted 6 March 1996  相似文献   

3.
Phase waves rotating in a ring of unidirectionally coupled parametric oscillators are studied. The system has a pair of spatially uniform stable periodic solutions with a phase difference and an unstable quasiperiodic traveling phase wave solution. They are generated from the origin through a period doubling bifurcation and the Neimark?CSacker bifurcation, respectively. In transient states, phase waves rotating in a ring are generated, the duration of which increases exponentially with the number of oscillators (exponential transients). A power law distribution of the duration of randomly generated phase waves and the noise-sustained propagation of phase waves are also shown. These properties of transient phase waves are well described with a kinematical equation for the propagation of wave fronts. Further, the traveling phase wave is stabilized through a pitchfork bifurcation and changes into a standing wave through pinning. These bifurcations and exponential transient rotating waves are also shown in an autonomous system with averaging and a coupled map model, and they agree with each other.  相似文献   

4.
The existence of axial–radial acoustic resonance oscillations of the basic air flow in bleed channels of aviation engines is demonstrated theoretically and experimentally. Numerical and analytical methods are used to determine the frequency of acoustic resonance oscillations for the lowest modes of open and closed bleed channels of the PS-90A engine. Experimental investigations reveal new acoustic resonance phenomena arising in the air flow in bleed channel cavities in the core duct of this engine owing to instability of the basic air flow. The results of numerical, analytical, and experimental studies of the resonance frequencies reached in the flow in bleed channel cavities in the core duct of the PS-90A engine are found to be in reasonable agreement. As a result, various types of resonance oscillations in bleed channels can be accurately described.  相似文献   

5.
《Comptes Rendus Mecanique》2007,335(9-10):665-678
The Boussinesq approximation provides a convenient framework to describe the dynamics of stably-stratified fluids. A fundamental motion in these fluids consists of internal gravity waves, whatever the strength of the stratification. These waves may be unstable through parametric instability, which results in turbulence and mixing. After a brief review of the main properties of internal gravity waves, we show how the parametric instability of a monochromatic internal gravity wave organizes itself in space and time, using energetics arguments and a simple kinematic model. We provide an example, in the deep ocean, where such instability is likely to occur, as estimates of mixing from in situ measurements suggest. We eventually discuss the fundamental role of internal gravity wave mixing in the maintenance of the abyssal thermal stratification. To cite this article: C. Staquet, C. R. Mecanique 335 (2007).  相似文献   

6.
Parametric excitation of a nonlinear physical pendulum by modulation of its moment of inertia is analyzed in terms of physics as an example of the suggested approach. The modulation is provided by a redistribution of auxiliary masses. The system is investigated both analytically and with the help of computer simulations. The threshold and other characteristics of parametric resonance are found and discussed in detail. The role of nonlinear properties of the physical system in restricting the resonant swinging is emphasized. Phase locking between the drive and oscillations of the pendulum and the phenomenon of parametric autoresonance are investigated. The boundaries of parametric instability are determined as functions of the modulation depth and the quality factor. The feedback providing active optimal control of amplification and attenuation of oscillations is analyzed. An effective method of suppressing undesirable rotary oscillations of suspended constructions is suggested.  相似文献   

7.
We investigate wave mixing effects in a phononic crystal that couples the wave dynamics of two channels – primary and control ones – via a variable stiffness mechanism. We demonstrate analytically and numerically that the wave transmission in the primary channel can be manipulated by the control channel's signal. We show that the application of control waves allows the selection of a specific mode through the primary channel. We also demonstrate that the mixing of two wave modes is possible whereby a modulation effect is observed. A detailed study of the design parameters is also carried out to optimize the switching capabilities of the proposed system. Finally, we verify that the system can fulfill both switching and amplification functionalities, potentially enabling the realization of an acoustic transistor.  相似文献   

8.
This paper is concerned with the existence, uniqueness, and global stability of traveling waves in discrete periodic media for a system of ordinary differential equations exhibiting bistable dynamics. The main tools used to prove the uniqueness and asymptotic stability of traveling waves are the comparison principle, spectrum analysis, and constructions of super/subsolutions. To prove the existence of traveling waves, the system is converted to an integral equation which is common in the study of monostable dynamics but quite rare in the study of bistable dynamics. The main purpose of this paper is to introduce a general framework for the study of traveling waves in discrete periodic media.  相似文献   

9.
The structure of the density profiles in stationary plane shock waves in a vibrationally excited gas is investigated. For self-similar solutions a bifurcation diagram is plotted in the parametric “traveling wave velocity—degree of nonequilibrium” plane. The bifurcation boundaries of the domains of existence of the structures of different types are analytically derived. It is shown that weak plane shock waves are unstable, accelerate, and break down into a sequence of pulses or-at a fairly high pumping rate-waves with nonzero asymptotics, whose amplitude and propagation velocity are independent of the initial disturbance and are determined by the parameters of the medium itself.  相似文献   

10.
Under considering the inertial force of angular acceleration and the shear stress due to the varying rotational speed, parametric instability of a flexible disk rotating at periodically varying angular speed is analyzed via an improved Hill’s method which is suitable for harmonic balance processing. The causation of parametric instability is interpreted innovatively, and new parameter region of instability is found. The analysis shows that the parametric instability occurs when a positive and a negative traveling wave intersect and overlap each other, and each intersection can result in its own instability region. The instability region is enlarged with increasing amplitude of the speed variation, but is reduced by increasing the difference between harmonic numbers of corresponding negative and positive traveling wave. And the shear stress enhances modes interaction of the disk and affects the instability regions considerably.  相似文献   

11.
The objective of this paper is an analytical and numerical study of the dynamics and dynamic instability of a slider-crank mechanism with an inextensible elastic coupler. Special attention is given to the phenomena arising due to modal interactions produced by the existence of multi-component, specifically two-component, parametric resonance. Such modal couplings are very common in the bending-bending motions of fixed/ rotating beams. The two-component parametric resonance occurs when one of the natural frequencies of flexible parts of the mechanism is one-half or twice of the excitation frequency and simultaneously the sums or the differences among the internal frequencies are the same, or neighboring, as the frequency of excitation. The effects of two-component parametric resonance post on instability condition are also investigated. Resonance generated by more than two component modes are neglected due to its remote probability of occurrence in nature. The mechanics of the problem is Newtonian. Methods of analysis will consist of the dynamics of small deformations superimposed on the undeformed state. Without loss of generality and based on the Euler–Bernoulli beam theory, the coupled nonlinear equations of motion of a slider-crank mechanism with an inextensible flexible linkage are derived. The Newtons second law is used to obtain the boundary constraints at the piston end. Galerkins procedure was used to remove the dependence of spatial coordinates in the partial differential equations. The method of multiple time scales is applied to consider the steady state solutions and the occurrence of dynamic instability of the resulting multidegree-of-freedom dynamical system with time-periodic coefficients.  相似文献   

12.
鉴于常规超声检测技术对分布式材料细微损伤和接触类结构损伤的检测效果不佳,近年来非线性超声技术逐渐引起广泛关注.超声波在板壳结构中通常以兰姆波的形式进行传播,然而由于兰姆波的频散及多模特性,使得非线性兰姆波的理论和实验研究进展缓慢.本文从经典非线性理论出发,总结了源于材料固有非线性诱发的非线性兰姆波的理论和实验两个方面的研究进展,井综述了兰姆波的二次谐波发生效应在材料损伤评价方面的若干应用;从接触声非线性理论出发,讨论了目前由于接触类结构损伤诱发的非线性兰姆波的研究现状.最后展望了非线性兰姆波的未来研究重点及发展趋势.  相似文献   

13.
This paper presents a nondestructive stress evaluation technique using the ultrasonic interference spectrum of leaky Lamb waves. By using a specific pitch-catch ultrasonic setup, the symmetric and antisymmetric modes of Lamb waves in a finite plate are decoupled, leading to simple relationships between the modal frequency spacing of two adjacent modes in the interference spectrum and the acoustic wave velocities that are functions of stress. As a result, the stress in the plate can be determined by measuring the modal frequency spacing instead of the relative flight times to calculate the acoustic wave velocity. Extensive experiments were carried out to verify the viability and robustness of the new technique using a simple testing system. It has been demonstrated that the new technique is about 25 times more accurate than existing flight-time approaches using the same testing system. The experimental results agree well with the results obtained by other ultrasonic methods using expensive equipment.  相似文献   

14.
Interactions of disturbances in a hypersonic boundary layer on a porous surface are considered within the framework of the weakly nonlinear stability theory. Acoustic and vortex waves in resonant three-wave systems are found to interact in the weak redistribution mode, which leads to weak decay of the acoustic component and weak amplification of the vortex component. Three-dimensional vortex waves are demonstrated to interact more intensively than two-dimensional waves. The feature responsible for attenuation of nonlinearity is the presence of a porous coating on the surface, which absorbs acoustic disturbances and amplifies vortex disturbances at high Mach numbers. Vanishing of the pumping wave, which corresponds to a plane acoustic wave on a solid surface, is found to assist in increasing the length of the regions of linear growth of disturbances and the laminar flow regime. In this case, the low-frequency spectrum of vortex modes can be filled owing to nonlinear processes that occur in vortex triplets.  相似文献   

15.
An experimental study of the propagation of high-frequency acoustic waves through grid-generated turbulence by means of an ultrasound technique is discussed. Experimental data were obtained for ultrasonic wave propagation downstream of heated and non-heated grids in a wind tunnel. A semi-analytical acoustic propagation model that allows the determination of the spatial correlation functions of the flow field is developed based on the classical flowmeter equation and the statistics of the travel time of acoustic waves traveling through the kinematic and thermal turbulence. The basic flowmeter equation is reconsidered in order to take into account sound speed fluctuations and turbulent velocity fluctuations. It allows deriving an integral equation that relates the correlation functions of travel time, sound speed fluctuations and turbulent velocity fluctuations. Experimentally measured travel time statistics of data with and without grid heating are approximated by an exponential function and used to analytically solve the integral equation. The reconstructed correlation functions of the turbulent velocity and sound speed fluctuations are presented. The power spectral density of the turbulent velocity and sound speed fluctuations are calculated.  相似文献   

16.
Within the framework of the weakly nonlinear stability theory, group interaction of disturbances in a supersonic boundary layer is considered. The disturbances are represented by two spatial packets of traveling instability waves (wave trains) with multiple frequencies. The possibility of energy redistribution in such wave systems in the case of three-wave resonant interactions of packet constituents is considered. The model is used to test the dynamics of unstable waves arising due to introduction of controlled high-intensity disturbances into a supersonic boundary layer. It is found that this mechanism is not the main one for the features of streamwise dynamics of such nonlinear waves being observed.  相似文献   

17.
The salient features of the reflection of compression waves traveling in a closed channel are studied in the presence of a contact boundary separating gases with different densities. The effect of the reflection nature on the evolution of the mixing region formed due to the Rayleigh-Taylor instability development is shown. The mixing rates are determined in all evolution stages.  相似文献   

18.
鉴于常规超声检测技术对分布式材料细微损伤和接触类结构损伤的检测效果不佳,近年来非线性超声技术逐渐引起广泛关注.超声波在板壳结构中通常以兰姆波的形式进行传播,然而由于兰姆波的频散及多模特性,使得非线性兰姆波的理论和实验研究进展缓慢.本文从经典非线性理论出发,总结了源于材料固有非线性诱发的非线性兰姆波的理论和实验两个方面的研究进展,并综述了兰姆波的二次谐波发生效应在材料损伤评价方面的若干应用;从接触声非线性理论出发,讨论了目前由于接触类结构损伤诱发的非线性兰姆波的研究现状.最后展望了非线性兰姆波的未来研究重点及发展趋势.  相似文献   

19.
Lamb波理论及层合板冲击损伤的实验研究   总被引:1,自引:1,他引:1  
周晚林  王鑫伟 《实验力学》2004,19(2):211-216
从理论上分析了板中Lamb波信号的传播特性,并给出Lamb波在板中传播的频散方程。理论分析及实验均表明,Lamb波的频散特性与复合材料结构损伤有着直接的联系,而且最低阶的对称和反对称Lamb波模态对层合板的损伤比较敏感,但应用Lamb波的频散效应监测结构的损伤在检测技术上还难以实现。根据板中导波形成Lamb波的共振原理,板中应力波的幅频特性很大程度上反映了Lamb波的谐振特征。因此,利用压电元件的压电阻抗谱分析应力波的各阶模态频率及振幅对结构损伤的变化,能够反映材料内部损伤与Lamb波的频散特性。文中针对表面粘贴压电元件的层合板智能结构,建立了包含Lamb波谐振模式的压电阻抗计算模型。冲击损伤试件的实验表明,由于结构损伤的出现压电阻抗谱中的模态频率及其阻抗幅值等特征信息将发生变化。因此,引入应力波损伤因子可以对结构冲击损伤的存在和程度进行初步评价。该方法基于结构的机-电动态阻抗特性,不受结构的几何形状限制,测试用的压电元件成本低,方法简单可行,有望在智能结构的健康诊断方面获得应用。  相似文献   

20.
Sphere scattering of the field of nonlinearly interacting plane acoustic waves when the sphere is located in the region of nonlinear interaction between the primary pumping waves of a parametric antenna is considered. An analytic expression for the secondary field pressure at the difference frequency is obtained. This expression describes the process of nonlinear interaction of the incident and scattered waves. The secondary-field total pressure components, which characterize the interaction between the incident plane waves and scattered spherical waves are analyzed. The numerical results and experimental data are given.Taganrog. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 4–12, March–April, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号