共查询到20条相似文献,搜索用时 0 毫秒
1.
Songdong Shao 《国际流体数值方法杂志》2006,50(5):597-621
In this paper a truly incompressible version of the smoothed particle hydrodynamics (SPH) method is presented to investigate the surface wave overtopping. SPH is a pure Lagrangian approach which can handle large deformations of the free surface with high accuracy. The governing equations are solved based on the SPH particle interaction models and the incompressible algorithm of pressure projection is implemented by enforcing the constant particle density. The two‐equation k–ε model is an effective way of dealing with the turbulence and vortices during wave breaking and overtopping and it is coupled with the incompressible SPH numerical scheme. The SPH model is employed to reproduce the experiment and computations of wave overtopping of a sloping sea wall. The computations are validated against the experimental and numerical data found in the literatures and good agreement is observed. Besides, the convergence behaviour of the numerical scheme and the effects of particle spacing refinement and turbulence modelling on the simulation results are also investigated in further detail. The sensitivity of the computed wave breaking and overtopping on these issues is discussed and clarified. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
2.
The focus of present study is on how to generate solitary waves as pure as possible by using a piston type wave maker. A meshless numerical model, which can simulate the trajectories of fluid particles in a wave motion exerted by the wave paddle, is established for the purpose of present study. The present numerical model is verified by the comparison with experimental data before it is employed to the focused problem. Various wave paddle motions are considered. The results show that solitary waves generated by applying Fenton’s solitary solution to the paddle motion proposed by Goring are purer than those generated by other paddle motions. 相似文献
3.
4.
Numerical simulations of wave interactions with vertical wave barriers using the SPH method 下载免费PDF全文
This paper focuses on the fluid boundary separation problem of the conventional dynamic solid boundary treatment (DSBT) and proposes a modified DSBT (MDSBT). Classic 2D free dam break flows and 3D dam break flows against a rectangular box are used to assess the performance of this MDSBT in free surface flow and violent fluid–structure interaction, respectively. Another test, water column oscillations in a U‐tube, is specially designed to reveal the applicability of dealing with two types of particular boundaries: the wet–dry solid boundary and the large‐curvature solid boundary. A comparison between the numerical results and the experimental data shows that the MDSBT is capable of eliminating the fluid boundary separation, improving the accuracy of the solid boundary pressure calculations and preventing the unphysical penetration of fluid particles. Using a 2D SPH numerical wave tank with MDSBT, the interactions between regular waves and a simplified vertical wave barrier are simulated. The numerical results reveal that the maximum horizontal force occurs at the endpoint of the vertical board, and with the enlargement of the relative submerged board length, the maximum moment grows linearly; furthermore, the relative average mass transportation under the breakwater initially increases to 11.14 per wave strike but is later reduced. The numerical simulation of a full‐scale 3D wave barrier with two vertical boards shows that the wave and structure interactions in the practical project are far more complicated than in the simplified 2D models. The SPH model using the MDSBT is capable of providing a reference for engineering designs. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
5.
基于SPH法的二维矩形液舱晃荡研究 总被引:3,自引:1,他引:3
液体晃荡是一种复杂的流体运动现象,自由液面的存在使得该现象具有很强的非线性和随机性。针对二维矩形液舱在不同振幅水平激励下的纵荡问题,应用SPH法对其进行了数值研究。首先计算了小振幅激励下的纵荡,计算结果分别与线性理论解、文献VOF法结果及文献SPH法结果作了比较分析,以验证所建数值模型的合理性;然后计算了液舱在大振幅水平激励下的纵荡,着重分析了不同振幅下液体晃荡的速度向量图、液面波动时程、压强波动时程、动量波动时程以及波动的频谱图,并将计算所得液面波动结果与小振幅激励下的液面波动结果作了比较。分析结果表明,在大振幅水平激励下,液面波动的波峰值较小振幅下的结果有较为明显的增大,而波谷值则无过大的变化,总体波动幅值比小振幅下的结果大;随着激励幅值的增大,液面波动幅值呈现明显增大的趋势,压强的整体波动幅值也呈增大趋势,动量波动的均值亦有明显增大;波动能量随着激励幅值的增大而增大并向第一阶频率区域集中。SPH法对处理液体大幅晃荡这种具有自由表面大变形的问题有十分优越的特性。 相似文献
6.
李继彬 《应用数学和力学(英文版)》2009,30(5):537-547
Dynamical analysis has revealed that, for some nonlinear wave equations, loop- and inverted loop-soliton solutions are actually visual artifacts. The so-called loopsoliton solution consists of three solutions, and is not a real solution. This paper answers the question as to whether or not nonlinear wave equations exist for which a "real" loopsolution exists, and if so, what are the precise parametric representations of these loop traveling wave solutions. 相似文献
7.
A horizontally curvilinear non‐hydrostatic free surface model that embeds the second‐order projection method, the so‐called θ scheme, in fractional time stepping is developed to simulate nonlinear wave motion in curved boundaries. The model solves the unsteady, Navier–Stokes equations in a three‐dimensional curvilinear domain by incorporating the kinematic free surface boundary condition with a top‐layer boundary condition, which has been developed to improve the numerical accuracy and efficiency of the non‐hydrostatic model in the standard staggered grid layout. The second‐order Adams–Bashforth scheme with the third‐order spatial upwind method is implemented in discretizing advection terms. Numerical accuracy in terms of nonlinear phase speed and amplitude is verified against the nonlinear Stokes wave theory over varying wave steepness in a two‐dimensional numerical wave tank. The model is then applied to investigate the nonlinear wave characteristics in the presence of dispersion caused by reflection and diffraction in a semicircular channel. The model results agree quantitatively with superimposed analytical solutions. Finally, the model is applied to simulate nonlinear wave run‐ups caused by wave‐body interaction around a bottom‐mounted cylinder. The numerical results exhibit good agreement with experimental data and the second‐order diffraction theory. Overall, it is shown that the developed model, with only three vertical layers, is capable of accurately simulating nonlinear waves interacting within curved boundaries. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
Jiandong He Mehmet Yildiz Juanmian Lei Afzal Suleman 《International Journal of Computational Fluid Dynamics》2017,31(3):174-187
A coupled weakly compressible (WC) and total Lagrangian (TL) smoothed particle hydrodynamics (SPH) method is developed for simulating hydroelastic problems. The fluid phase is simulated using WCSPH method, while the structural dynamics are solved using TLSPH method. Fluid and solid components of the method are validated separately. A sloshing water tank problem is solved to test the WCSPH method while oscillation of a thin plate and large deformation of a cantilever beam are simulated to test the TLSPH method. After validating each component, the coupled WC-TL SPH scheme is used to simulate two benchmark hydroelastic problems. The first test case shows the evolution of water column with an elastic boundary gate, and the second one investigates the breaking water column impact on elastic structures. The agreement between WC-TL SPH results and literature data shows the ability of the proposed method in simulating hydroelastic phenomena. 相似文献
9.
IntroductionCaissonbreakwatersarewidelyusedincoastalengineeringandhavetheadvantagesthatcanbeusedindeepwateranddevelopedtomulti_functiontypes.However,thewavesareeasilybrokenandmayproduceextremelyhighimpactforceonacaissonbreakwater.Inrecentdecades,therehavebeenmanyfailureexamplesofbreakwatersunderbreakingwaveimpactintheworld[1- 3].Thedurationofbreakingwaveimpactisveryshortandtheresponsesofcaissonbreakwatershaveobviouslydynamicbehaviorsunderbreakingwaveimpact,butthestaticmethodisstillusedinthedes… 相似文献
10.
The objective of this paper is to present an extension of the Lagrangian Smoothed Particle Hydrodynamics (SPH) method to solve three-dimensional shell-like structures undergoing large deformations. The present method is an enhancement of the classical stabilized SPH commonly used for 3D continua, by introducing a Reissner–Mindlin shell formulation, allowing the modeling of moderately thin structure using only one layer of particles in the shell mid-surface. The proposed Shell-based SPH method is efficient and very fast compared to the classical continuum SPH method. The Total Lagrangian Formulation valid for large deformations is adopted using a strong formulation of the differential equilibrium equations based on the principle of collocation. The resulting non-linear dynamic problem is solved incrementally using the explicit time integration scheme, suited to highly dynamic applications. To validate the reliability and accuracy of the proposed Shell-based SPH method in solving shell-like structure problems, several numerical applications including geometrically non-linear behavior are performed and the results are compared with analytical solutions when available and also with numerical reference solutions available in the literature or obtained using the Finite Element method by means of ABAQUS© commercial software. 相似文献
11.
Introduction FangShaomeiandGuoBoling[1]consideredthefollowingtimeperiodicproblemof dampedcouplednonlinearwaveequations:ut f(u)x-αuxx βuxxx 2vvx=G1(u,v) h1(x),vt-γvxx 2(uv)x g(v)x=G2(u,v) h2(x),(1)whereα,β,γareconstants,andγ>0,β≠0.Undertheperiodicboundaryconditions,the authorsobtainedtheuniqueexistenceofstrongsolutionsfortheabovesystem.InthispaperweshallconsiderbifurcationbehaviorofthetravellingwavesolutionsofEq.(1)inthecaseGi(u,v)≡0,hi(u,v)≡0(i=1,2).Letξ=x-ct,u=u(x-ct),where cis… 相似文献
12.
In this paper, the performance of the incompressible SPH (ISPH) method and an improved weakly compressible SPH (IWCSPH) method for free surface incompressible flows are compared and analyzed. In both methods, the Navier–Stokes equations are solved, and no artificial viscosity is used. The ISPH algorithm in this paper is based on the classical SPH projection method with common treatments on solid boundaries and free surfaces. The IWCSPH model includes some advanced corrective algorithms in density approximation and solid boundary treatment (SBT). In density approximation, the moving least squares (MLS) approach is applied to re‐initialize density every several steps to obtain smoother and more stable pressure fields. An improved coupled dynamic SBT algorithm is implemented to obtain stable pressure values near solid wall areas and, thus, to minimize possible numerical oscillations brought in by the solid boundaries. Three representative numerical examples, including a benchmark test for hydrostatic pressure, a dam breaking problem and a liquid sloshing problem, are comparatively analyzed with ISPH and IWCSPH. It is demonstrated that the present IWCSPH is more attractive than ISPH in modeling free surface incompressible flows as it is more accurate and more stable with comparable or even less computational efforts. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
13.
This work presents a numerical model designed for the simulation of water‐wave impacts on a structure when aeration of the liquid phase is considered. The model is based on a multifluid Navier–Stokes approach in which all fluids are assumed compressible. The numerical method is based on a finite volume algorithm in space and a second order Runge–Kutta method in time. A validation of this model is performed. It shows a good accuracy for acoustic and shock wave propagation in a bubbly liquid and for wave breaking. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
14.
In this paper, we study how accurately the Smoothed Particle Hydrodynamics (SPH) scheme accounts for the conservation and the generation of vorticity and circulation, in a low viscosity, weakly compressible, barotropic fluid in the context of free‐surface flows. We consider a number of simple examples to clarify the processes involved and the accuracy of the simulations. The first example is a differentially rotating fluid where the integration path for the circulation becomes progressively more complicated, whereas the structure of the velocity field remains simple. The second example is the collision of two rectangular regions of fluid. We show that SPH accurately predicts the time variation of the circulation as well as the total vorticity for selected domains advected by the fluid. Finally, a breaking wave is considered. For such a problem we show how the dynamics of the vorticity generated by the breaking process is captured by the SPH model. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
15.
Time domain simulation of the interaction between offshore structures and irregular waves in shallow water becomes a focus due to significant increase of liquefied natural gas (LNG) terminals. To obtain the time series of irregular waves in shallow water, a numerical wave tank is developed by using the meshless method for simulation of 2D nonlinear irregular waves propagating from deep water to shallow water. Using the fundamental solution of Laplace equation as the radial basis function (RBF) and locating the source points outside the computational domain, the problem of water wave propagation is solved by collocation of boundary points. In order to improve the computation stability, both the incident wave elevation and velocity potential are applied to the wave generation. A sponge damping layer combined with the Sommerfeld radiation condition is used on the radiation boundary. The present model is applied to simulate the propagation of regular and irregular waves. The numerical results are validated by analytical solutions and experimental data and good agreements are observed. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
16.
17.
Hua Ding Yan-Feng Wu Li-Ping Long Nai-Gang Liang 《Mechanics Research Communications》2006,33(1):42-52
By using the kernel function of the smoothed particle hydrodynamics (SPH) and modification of statistical volumes of the boundary points and their kernel functions, a new version of smoothed point method is established for simulating elastic waves in solid. With the simplicity of SPH kept, the method is easy to handle stress boundary conditions, especially for the transmitting boundary condition. A result improving by de-convolution is also proposed to achieve high accuracy under a relatively large smooth length. A numerical example is given and compared favorably with the analytical solution. 相似文献
18.
The main difficulty for the numerical calculation of the wave running up a beach is the treatment of its moving water boundary.
In this paper a scheme of turning the free boundary problem into a fixed boundary problem is designed. The calculated run-up
height is consistent with the experiments. Some interesting wave phenomena are also found. 相似文献
19.
《Wave Motion》2020
To solve scattering problems with multi-transmitting boundary, we present an improved wave motion input method based on the idea that error caused by the difference between incident wave field used in calculation and waves propagating in finite element grids can be eliminated to suppress drift instability. In this method, a calculation scheme is proposed to obtain the numerical solution of incident wave field, which establishes boundary region models with the multi-transmitting boundary. Numerical experiments demonstrate that this improved wave motion input method not only eliminates drift instability but also effectively improves the calculation accuracy of low-frequency components. Furthermore, the method is easy to implement and, unlike other approaches, does not need artificial parameters. Thus, this method is proposed for use in wave scattering simulation such as seismic response analyses of structures, particularly for long-period structures and those that are sensitive to low frequency. 相似文献
20.
H. Johnsgard 《国际流体数值方法杂志》1999,31(8):1321-1331
In the present paper, the numerical method for the three‐dimensional run‐up, given in Johnsgard and Pedersen [‘A numerical model for three‐dimensional run‐up’, Int. J. Numer. Methods Fluids, 24 , 913–931 (1997)], is extended to include wave breaking. In the fundamental problem of run‐up of a uniform bore, the present model is compared with analytical solutions from the literature. The numerical solutions converge, but very slowly. This is not due to the numerical model, but rather to the structure of the solutions themselves. Numerical results for two realistic but simplified tsunami cases are also presented. In the first case, two‐dimensional simulations are performed concerning the run‐up of a tsunami in Portugal, in the second case, the three dimensional wave pattern generated after a slide in Tafjord, Norway in 1931, is studied. A discussion of different aspects of the model is summarized at the end of the paper. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献