首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Wave Motion》2014,51(1):86-99
An efficient numerical method to compute solitary wave solutions to the free surface Euler equations is reported. It is based on the conformal mapping technique combined with an efficient Fourier pseudo-spectral method. The resulting nonlinear equation is solved via the Petviashvili iterative scheme. The computational results are compared to some existing approaches, such as Tanaka’s method and Fenton’s high-order asymptotic expansion. Several important integral quantities are computed for a large range of amplitudes. The integral representation of the velocity and acceleration fields in the bulk of the fluid is also provided.  相似文献   

3.
The Rayleigh wave, that propagates at the free surface of semi-infinite anisotropic medium, is composed of three inhomogeneous partial waves, each propagating along the surface with a different attenuation along the depth. Since this wave does not exhibit an attenuation on the surface, let us call it the homogeneous Rayleigh wave. The associated slowness corresponds to the real solution of the Rayleigh dispersion equation. Besides this classical solution, an infinite number of complex solutions of the Rayleigh dispersion equation exits. For such particular Rayleigh waves, the slowness vector, i.e. the identical component on the surface of the slowness of each partial waves, is taken to be complex. Thus, these Rayleigh waves are attenuated on the surface and as shown here, their attenuation is normal to the ray direction (or the energy velocity direction). Similarly to the infinite inhomogeneous plane waves which can be associated with complex rays, we call these waves, inhomogeneous Rayleigh waves. We use the inhomogeneous skimming waves, which are inhomogeneous plane waves, and the inhomogeneous Rayleigh waves to explain differently the usual diffraction phenomena on the free surface which cannot be explained by the real ray theory. For example, the arrival time of the wave packet observed beyond the cusp is in perfect accordance with the arrival time of some specific inhomogeneous Rayleigh waves. We show that these results are in agreement with the computation of the Green function. They apply to the theory of surface waves in linear elastodynamics with intrinsic anisotropy as well as to the theory of surface waves in linearised (incremental) elastodynamics with strain-induced anisotropy (also known as small-amplitude waves superimposed on the large static homogeneous deformation of a non-linear solid).  相似文献   

4.
We discuss the effects of vertical gravity force on wave propagation when a material is intermediate between solid and fluid, especially we focus on what kinds of phase are generated and how it propagates on the surface. We introduce gravity terms into the 2D linear finite element method in order to account for the contribution from the gravity. Numerical simulations are conducted for a half-space model and a two-layered, single horizontal layer overlain on a half-space, model. Both models are compared between the results including and excluding the viscosity. The fastest phase propagating from a surface point source, a leaking Rayleigh wave for usual elastic material, is transformed into an interesting phase including some common features to the gravity wave when the gravity effect becomes significant. The viscosity does not affect the fastest phases, whereas it affects other latter phases appearing only for the two-layered model.  相似文献   

5.
6.
Pressure vessels usually operate under extremes of high/low temperatures and high pressures. Defect, such as crack and corrosion, can result in leakage or rupture failures, even catastrophic incidents. Guided wave-based structural health monitoring (SHM) technology is one of the most prominent options in non-destructive evaluation and testing (NDE/NDT) techniques. Propagation of guided waves in a typical pressure vessel is systematically investigated in this study for the application of guided wave-based SHM. Shape of the pressure vessel is a cylinder with two end caps. Because of geometric similarity, theory of guided wave propagation in the cylinderical structure is analyzed to study dispersive features of guided waves in the pressure vessel. Dispersion curves of three different types of guided wave modes, viz. the longitudinal, torsional and flexural modes, are calculated using theoretical method. Based on the analyses and experimental wave signals, central frequency and wave parameters of incident wave are optimized. Effect of contained liquid on propagation of guided waves, especially the L(0, 2) mode, in the pressure vessel is further investigated to minimize energy leakage of the wave to the contained liquid. The analytical method, finite element analysis (FEA) and experiments are applied to study propagation characteristics of guided waves in the pressure vessel, so as to demonstrate the feasibility of guided wave-based non-destructive evaluation and testing (NDE/NDT) for such kind of complex structures.  相似文献   

7.
We present explicit expression of the polarization vector for surface waves and slip waves in an anisotropic elastic half-space, and Stoneley waves and interfacial slip waves in two dissimilar anisotropic elastic half-spaces. An unexpected result is that, in the case of interfacial slip waves, the polarization vector for the material in the half-space x2≥0x20 does not depend explicitly on the material property in the half-space x2≤0x20. It depends on the material property in the half-space x2≤0x20 implicitly through the interfacial slip wave speed υυ. The same is true for the polarization vector for the material in the half-space x2≤0x20.  相似文献   

8.
The discrete element method (DEM) is a capable tool used to simulate shear wave propagation in granular assemblies for many years. Researchers have studied assembly shapes such as rectangles (in 2D simulations) or cylinders and cubes (in 3D simulations). This paper aimed to qualify the effect of assembly shape on the shear wave propagation and maximum amplification in the vertical plane (horizontal and vertical directions) caused by this propagation. To this end, shear wave propagations in different assembly shapes such as rectangle, trapezium, and triangle with rigid boundary conditions were simulated. A sine wave pulse was applied with a point source by moving a particle as the transmitter particle. To evaluate the shear wave velocity of the assemblies, the transmitter and receiver particles were simulated. All the simulations were performed with 2D DEM which is a useful tool to determine the amount and location of the maximum amplification factor of the assembly in both horizontal and vertical directions. An advantage of this study was assessing the effect of parameters such as input wave frequency, assembly height, shape, and aspect ratios on the amplification of the input waves.  相似文献   

9.
The viscosity of water induces a vorticity near the free surface boundary. The resulting rotational component of the fluid velocity vector greatly complicates the water wave system. Several approaches to close this system have been proposed. Our analysis compares three common sets of model equations. The first set has a rotational kinematic boundary condition at the surface. In the second set, a gauge choice for the velocity vector is made that cancels the rotational contribution in the kinematic boundary condition, at the cost of rotational velocity in the bulk and a rotational pressure. The third set circumvents the problem by introducing two domains: the irrotational bulk and the vortical boundary layer. This comparison puts forward the link between rotational pressure on the surface and vorticity in the boundary layer, addresses the existence of nonlinear vorticity terms, and shows where approximations have been used in the models. Furthermore, we examine the conservation of mass for the three systems, and how this can be compared to the irrotational case.  相似文献   

10.
Time domain simulation of the interaction between offshore structures and irregular waves in shallow water becomes a focus due to significant increase of liquefied natural gas (LNG) terminals. To obtain the time series of irregular waves in shallow water, a numerical wave tank is developed by using the meshless method for simulation of 2D nonlinear irregular waves propagating from deep water to shallow water. Using the fundamental solution of Laplace equation as the radial basis function (RBF) and locating the source points outside the computational domain, the problem of water wave propagation is solved by collocation of boundary points. In order to improve the computation stability, both the incident wave elevation and velocity potential are applied to the wave generation. A sponge damping layer combined with the Sommerfeld radiation condition is used on the radiation boundary. The present model is applied to simulate the propagation of regular and irregular waves. The numerical results are validated by analytical solutions and experimental data and good agreements are observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The scaling and similarity laws concerning the propagation of isolated spherical blast waves are briefly reviewed. Both point source explosions and high pressure gas explosions are considered. Test data on blast overpressure from the interaction and coalescence of spherical blast waves emanating from explosives in the form of shaped charges of different strength placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure. The results point out the possibility of detecting source explosions from far-field pressure measurements.   相似文献   

13.
A series of laboratory experiments were conducted to investigate the damping effect of net cages in waves. The wave transmission coefficient of the net cage was investigated with different wave periods, wave heights, numbers of net cages, net solidities, measurement positions, geometrical shapes of the net cage and Reynolds numbers. The experimental results show that the net cage has noticeable influence on wave propagation and the damping effect of net cages has a close relationship with many parameters. For multiple net cages, the transmission coefficient tends to increase as the wave period increases. The transmission coefficient of net cages decreases with increasing wave height. As the number of net cages increases, the wave transmission coefficient will decrease gradually. The damping effect of net cages on wave propagation tends to increase with increasing net solidity. The measurement position has an effect on the value of wave transmission coefficient. For net cages with different geometrical shapes, the circular net cage has more noticeable damping effect than the square net cage. A numerical model is introduced to simulate the interaction between waves and net cages with the fishing net treated as the porous media fluid model. The wave transmission coefficient downstream from net cages shows good agreement between experimental and numerical results. The study will contribute to understanding of the damping effect of a large fish farm on wave propagation.  相似文献   

14.
The modulation of the optical path of the beam of a laser vibrometer in a specimen under acoustic excitation is measured at two planes, separated by a precisely known distance. The phase shift and the decrease in magnitude are used to calculate the phase velocity and attenuation, respectively. The method is demonstrated for a homogeneous specimen, and the results compare favorably with those obtained by a conventional ultrasonic technique. The method is then applied to measure specular and first diffraction-order reflection from a coplanar periodic array of particles in an elastic matrix and phase velocity spectra in a tetragonal periodic particulate composite. As expected, in a periodic composite the establishment of dispersive Floquet-type waves is observed throughout the entire periodic particulate composite.  相似文献   

15.
The objective of this research is to develop a model that will adequately simulate the dynamics of tsunami propagating across the continental shelf. In practical terms, a large spatial domain with high resolution is required so that source areas and runup areas are adequately resolved. Hence efficiency of the model is a major issue. The three‐dimensional Reynolds averaged Navier–Stokes equations are depth‐averaged to yield a set of equations that are similar to the shallow water equations but retain the non‐hydrostatic pressure terms. This approach differs from the development of the Boussinesq equations where pressure is eliminated in favour of high‐order velocity and geometry terms. The model gives good results for several test problems including an oscillating basin, propagation of a solitary wave, and a wave transformation over a bar. The hydrostatic and non‐hydrostatic versions of the model are compared for a large‐scale problem where a fault rupture generates a tsunami on the New Zealand continental shelf. The model efficiency is also very good and execution times are about a factor of 1.8 to 5 slower than the standard shallow water model, depending on problem size. Moreover, there are at least two methods to increase model accuracy when warranted: choosing a more optimal vertical interpolation function, and dividing the problem into layers. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The propagation of circularly crested thermoelastic diffusive waves in an infinite homogeneous transversely isotropic plate subjected to stress free, isothermal/insulated and chemical potential conditions is investigated in the framework of different thermo- elastic diffusion theories. The dispersion equations of thermoelastic diffusive Lamb type waves are derived. Some special cases of the dispersion equations are also deduced.  相似文献   

17.
T.C.T. Ting   《Wave Motion》2009,46(5):323-335
It is known that a subsonic surface (Rayleigh) wave exists in an anisotropic elastic half-space x2  0 if the first transonic state is not of Type 1. If the first transonic state is of Type 1 but the limiting wave is not exceptional, a subsonic surface wave exists. If the first transonic state is of Type 1 and the limiting wave is exceptional, a subsonic surface wave exists when . It is shown that an exceptional body wave is necessarily an exceptional transonic wave, and could be an exceptional limiting wave. Only two wave speeds are possible for an exceptional body wave. We present explicit conditions in terms of the reduced elastic compliances for the existence of an exceptional body wave. If an exceptional body wave exists, conditions are given for identifying whether the transonic state is of Type 1. Hence, through the existence of an exceptional body wave we provide explicit conditions for the existence of a subsonic surface wave with the exception when needs to be computed.  相似文献   

18.
Tandem shock waves have shown to enhance kidney stone fragmentation during in vitro and in vivo extracorporeal shock wave lithotripsy (SWL). The purpose of this research was to study the influence of shock waves on the viability of two strains of bacteria in solution, and to verify if tandem shock waves increase microorganism death. A piezoelectric shock wave generator was modified to generate either standard (single-pulse) or tandem (dual-pulse) shock waves. E. coli and Listeria monocytogenes were exposed in vitro to thousands of standard shock waves. Another group was subjected to the same number of tandem shock waves with a delay of 450 μs. A third group was exposed to tandem shock waves having a 900-μs delay. No inactivation was observed for both microorganisms at up to 8,000 standard shock waves. About 40% of L. monocytogenes and 50% of E. coli were inactivated after treatment with tandem waves at a delay of 900 μs. Inactivation was less efficient for a delay of 400 μs. Our results could be useful in medicine, because infection stones are still a significant cause of morbidity and mortality after SWL. The use of tandem shock waves to treat persistent localized infections or as a novel non-thermal food-preservation method also might be possible.   相似文献   

19.
Studies on the oblique interactions of weakly nonlinear long waves in dispersive systems are surveyed. We focus mainly our concentration on the two-dimensional interaction between solitary waves. Two-dimensional Benjamin–Ono (2DBO) equation, modified Kadomtsev–Petviashvili (MKP) equation and extended Kadomtsev–Petviashvili (EKP) equation as well as the Kadomtsev–Petviashvili (KP) equation are treated. It turns out that a large-amplitude wave can be generated due to the oblique interaction of two identical solitary waves in the 2DBO and the MKP equations as well as in the KP-II equation. Recent studies on exact solutions of the KP equation are also surveyed briefly.  相似文献   

20.
This paper presents a method for the calculation of steady periodic capillary-gravity waves on water of arbitrary uniform depth. The method developed by Debiane and Kharif in 1997 for infinite depth is extended to finite depth. The water-wave problem is reduced to a system of nonlinear algebraic equations which is solved using Newton's method. For the resonant configurations, the method does not suffer from the Wilton's failures and is valid for all depths. In addition, it is shown that the method allows the computation of solitary waves and generalized solitary waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号