首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Cannabis has garnered a great deal of new attention in the past couple of years in the United States due to the increasing instances of its legalization for recreational use and indications for medicinal benefit. Despite a growing number of laboratories focused on cannabis analysis, the separation science literature pertaining to the determination of cannabis natural products is still in its infancy despite the plant having been utilized by humans for nearly 30 000 years and it being now the most widely used drug worldwide. This is largely attributable to the restrictions associated with cannabis as it is characterized as a schedule 1 drug in the United States. Presented here are reviewed analytical methods for the determination of cannabinoids (primarily) and terpenes (secondarily), the primary natural products of interest in cannabis plants. Focus is placed foremost on analyses from plant extracts and the various instrumentation and techniques that are used, but some coverage is also given to analysis of cannabinoid metabolites found in biological fluids. The goal of this work is to provide a collection of relevant separation science information, upon which the field of cannabis analysis can continue to grow.  相似文献   

2.
A microwave distillation method was optimized for the extraction and isolation of cannabis essential oil from fresh and dried hemp inflorescences. The developed method enabled us to obtain a distilled product rich in terpenes and terpenoid compounds, responsible of the typical and unique smell of the cannabis plant. The distillate from different hemp cultivars, including Kompolti, Futura 75, Carmagnola, Felina 32 and Finola were characterized by using a gas chromatograph equipped with both mass spectrometer and flame ionization detectors. In a single chromatographic run, the identity and absolute amounts of distilled compounds were determined. Peak assignment was established using a reliable approach based on the usage of two identification parameters, named reverse match, and linear retention index filter. Absolute quantification (mg g−1) of the analytes was performed using an internal standard method applying the flame ionization detector (FID) response factors according to each chemical family. An enantio-GC-MS method was also developed in order to evaluate the enantiomeric distribution of chiral compounds, an analytical approach commonly utilized for establishing the authenticity of suspicious samples.  相似文献   

3.
Analysis of terpenes in white wines using SPE-SPME-GC/MS approach   总被引:3,自引:0,他引:3  
Terpenes contribute to some white wines aroma, especially these produced from Muscat grapes and others aromatic ones of high terpene contents (Gewürtztramminer, Traminer, Huxel, Sylvaner). Terpenes are present in wine in free and bound (in a form of glycosides) forms. Analyses of bound terpenes are usually performed using solid phase extraction after hydrolysis of glycosides. A new method for determination of terpenes from wine, focused on determination of terpenes released after acidic hydrolysis, based on solid phase extraction (SPE) followed by solid phase microextraction (SPME) was developed. Non-polar (free) and polar (bound terpenes) fractions were separated on 500 mg C18 cartridges. Bound terpenes were sampled using SPME immediately after acidic hydrolysis in non-equilibrium conditions. Application of combined SPE-SPME approach allowed quantification of selected terpenes in lower concentrations than in SPE approach and added a selectivity to the method, which enabled detection of compounds non-detectable in SPE extracts. Results obtained by SPE and SPE-SPME approach were correlated for free terpenes and those released after acid hydrolysis 20 white wines obtained from different grape varieties (R2 = 0.923). Although developed for wine terpenes analysis, SPE followed by SPME approach has a great potential in analysis of other bound wine flavor compounds, especially those potent odorants present in trace amounts.  相似文献   

4.
Building structures made from fir wood are often attacked by wood-destroying insects for which the terpenes it contains serve as attractants. One of the possibilities for extending the lifetime of structures is to use older wood with a lower content of terpenes and/or thermally modified wood. The study evaluated the levels of terpenes in naturally aged fir wood (108, 146, 279, 287 and 390 years) and their decrease by thermal treatment (the temperature of 60 °C and 120 °C, treatment duration of 10 h). Terpenes were extracted from wood samples by hexane and?analyzed by gas-chromatography mass-spectrometry (GC-MS). The results indicate that recent fir wood contained approximately 60 times more terpenes than the oldest wood (186:3.1 mg/kg). The thermal wood treatment speeded up the release of terpenes. The temperature of 60 °C caused a loss in terpenes in the recent fir wood by 62%, the temperature of 120 °C even by >99%. After the treatment at the temperature of 60 °C the recent fir wood had approximately the same quantity of terpenes as non-thermally treated 108 year old wood, i.e., approximately 60-70 mg/kg. After the thermal treatment at the temperature of 120 °C the quantity of terpenes dropped in the recent as well as the old fir wood to minimum quantities (0.7-1.1 mg/kg). The thermal treatment can thus be used as a suitable method for the protection of fir wood from wood-destroying insects.  相似文献   

5.
The aim of this work was to evaluate the pharmacological effect of seven structurally related terpenes on the contractility of cardiac muscle. The effect of terpenes was studied on isolated electrically driven guinea pig left atrium. From concentration–response curves for inotropic effect were determined the EC50 and relative potency of such terpenes. Our results revealed that all terpenes, except phytol, showed ability to reduce the contractile response of guinea pig left atrium. Further, relative potency was directly related to the number of isoprene units and to the lipophilicity of the compounds. For example, sesquiterpenes farnesol and nerolidol showed higher relative potency when compared with the monoterpenes citronellol, geraniol and nerol. We can conclude that most of the evaluated terpenes showed a promising negative inotropism on the atrial muscle. Future studies are necessary to investigate their action mechanism.  相似文献   

6.
The separation and identification of natural mixtures of terpenes is challenging and laborious. A gas chromatographic method based on vacuum ultraviolet spectroscopic detection, which is characterized by full‐scan absorption in the range of 125–240 nm, was developed and applied to analyze terpenes. In this study, the vacuum ultraviolet absorption spectra of 41 different standard terpenes were investigated and compared. The spectra were found to be highly featured and easily differentiated. Several commercial turpentine samples were analyzed and the vacuum ultraviolet detector demonstrated good specificity for qualitative identification of constituent terpenes. A total of 31 terpenes were detected in the four turpentine samples. α‐Pinene was the predominant terpene ranging from 744.2 ± 9.7 to 917 ± 21 mg/mL. The other major constituents in the turpentines included β‐pinene, δ‐3‐carene, camphene, and p‐isopropyltoluene. Deconvolution of co‐eluting signals of terpenes was achieved utilizing the data analysis software. The technique has been demonstrated to be a powerful tool for reliable and accurate qualitative and quantitative analysis of terpenes from complex natural mixtures.  相似文献   

7.
Studies of climate change increasingly recognize the diverse influences exerted by terpenes in the atmosphere, including roles in particulates, ozone formation, and their oxidizing potential. Measurements of key terpenes suggest atmospheric concentrations ranging from low pmol/mol (parts per trillion) to nmol/mol (parts per billion), depending on location and compound. To accurately establish concentration trends, assess the role of terpenes in atmospheric chemistry, and relate measurement records from many laboratories and researchers, it is essential to have good calibration standards. The feasibility of preparing well-characterized, stable gas cylinder standards for terpenes at the nmol/mol level is not yet well established. Several of the world’s National Metrology Institutes (NMIs) are researching the feasibility of developing primary and secondary reference gas standards at the nmol/mol level for terpenes. The US NMI, the National Institute of Standards and Technology, has prepared several nmol/mol mixtures, in treated aluminum gas cylinders, containing terpenes in dry nitrogen at nominal 5 nmol/mol for stability studies. Overall, 11 terpenes were studied for stability. An initial gas mixture containing nine terpenes, one oxygenate, and six aromatic compounds, including benzene as an internal standard, was prepared. Results for four of the nine terpenes in this initial mixture indicate stability in these treated aluminum gas cylinders for over 6 months and project long term (years) stability. Interesting results were seen for β-pinene, which when using a linear equation rate decline predicts that it will reach a zero concentration level at day 416. At the same time, increases in α-pinene, d-limonene (R-(+)-limonene), and p-cymene were observed, including camphene, a terpene not prepared in the gas mixture, indicating a chemical transformation of β-pinene to these species. Additional mixtures containing combination of either α-pinene, camphor, α-terpinene, and benzene indicate a second-order quadratic rate decline for the α-pinene and α-terpinene, a linear rate decline for camphor, and a second-order quadratic rate increase of camphene.  相似文献   

8.
Cold-pressed plant oils are of high interest to consumers due to their unique and interesting flavors. As they are usually only pressed at low temperatures and filtered, without further processing stages (as refining), they preserve their character that originates from the plant the oil was extracted from. Coriander cold pressed oil is gaining popularity as a novel product, obtained from its fruits/seeds; due to the high amount of terpenes, it has very characteristic flavor. A novel, vacuum-assisted sorbent extraction (VASE) method was used to extract terpenes from coriander cold pressed oil. Optimal parameters were determined. The profile of compounds extracted using VASE was compared with that of classic hydrodistillation method. Moreover, 17 monoterpene hydrocarbons and alcohols were identified with β-linalool as the main compound, followed by α-pinene, γ-terpinene, camphor, sylvestrene, β-pinene, and o-cymene. Differences were noted between profiles of terpenes after hydrodistillation and VASE extraction. For 8 out of 17 terpenes, VASE was used for their quantitative analysis. Regarding simplicity of the method, small sample requirement (200 mg) and short extraction time (5 min), VASE combined with GC/MS is well suited for characterization of terpenes in such matrix as plant oils.  相似文献   

9.
Pyrolysis-gas chromatography/mass spectrometry using tetramethylammonium hydroxide (TMAH-py-GC/MS) was used to characterize the humic acids (HAs) produced during the composting of conifer bark. The syringyl to guaiacyl ratios of HAs during composting were estimated from the peak area ratios for 3,4,5-trimethoxy to 3,4-dimethoxy benzene derivatives (0.11–0.50), which are characteristic of conifer species. The peak areas for nitrogen-containing and fatty acid pyrolysate compounds increased significantly during composting, indicating the degree of humification during composting. HA samples from the bark composts contained higher levels of diterpene resin acids, monoterpenes and sesquiterpenes. To investigate the species of terpenes, the HA was extracted with ethanol, and the components of the extract classified into α-HA and hymatomelanic acid (HMA) fractions, respectively. The peak areas for terpenes in the α-HA fraction were much smaller than those in the original HA, indicating that the majority of terpenes were extracted into the HMA fraction. If terpenes were to bind to HMA via unspecified interactions, no peaks would be apparent for the direct injection of HMA in ethanol into the GC/MS without pyrolysis. A comparison of the total ion chromatograms of HMA for the TMAH-py-GC/MS and GC/MS revealed that terpenes in the HA had been incorporated into polymeric structures of HMA. These results indicate that terpenes are transferred from the raw bark and incorporated into HA fractions during the composting processes.  相似文献   

10.
Pinaceae plants are widely distributed in the world, and the resources of pine leaves are abundant. In the extensive literature concerning Pinus species, there is much data on the composition and the content of essential oil of leaves. Still, a detailed comparative analysis of volatile terpenes and terpenoids between different species is missing. In this paper, headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry was used to determine the volatile terpenes and terpenoids of typical Pinus species in China. A total of 46 volatile terpenes and terpenoids were identified, and 12 common compounds were found, which exhibited a great diversity in the leaves of Pinus species. According to the structures and properties of the compounds, all those compounds can be classified into four categories, namely monoterpenes, oxygenated terpenes, terpene esters, and sesquiterpenes. The results of principal component analysis and cluster analysis showed that the leaves of the six Pinus species could be divided into two groups. The species and contents of volatile terpenes and terpenoids in the leaves were quite different. The results not only provide a reference for the utilization of pine leaves resource, but also bring a broader vision on the biodiversity.  相似文献   

11.
Yeast particles (YPs) are 3–5 µm hollow and porous microspheres, a byproduct of some food grade yeast (Saccharomyces cerevisiae) extract manufacturing processes. Terpenes can be efficiently encapsulated inside YPs by passive diffusion through the porous cell walls. As previously published, this YP terpene encapsulation approach has been successfully implemented (1) to develop and commercialize fungicide and nematicide products for agricultural applications, (2) to co-load high potency agrochemical actives dissolved in terpenes or suitable solvents, and (3) to identify YP terpenes with broad-acting anthelmintic activity for potential pharmaceutical applications. These first-generation YP terpene materials were developed with a <2:1 terpene: YP weight ratio. Here we report methods to increase the terpene loading capacity in YPs up to 5:1 terpene: YP weight ratio. Hyper-loaded YP terpenes extend the kinetics of payload release up to three-fold compared to the commercialized YP terpene formulations. Hyper-loaded YP-terpene compositions were further optimized to achieve high terpene storage encapsulation stability from −20 °C to 54 °C. The development of hyper-loaded YP terpenes has a wide range of potential agricultural and pharmaceutical applications with terpenes and other compatible active substances that could benefit from a delivery system with a high payload loading capacity combined with increased payload stability and sustained release properties.  相似文献   

12.
郝杰  高玉霞  陈厚睿  胡君  巨勇 《高分子学报》2020,(3):239-266,I0001,I0002
随着可持续发展观念的逐步深入,可持续性聚合物已发展成为当今高分子领域的研究热点之一.萜类化合物作为自然界中一类来源广泛的天然资源,具有多种可修饰位点和丰富的功能性,由它出发制备可持续性聚合物,不仅可以简化聚合物的合成步骤,还可以赋予聚合物独特的立体构型、良好的生物活性和生物相容性等特点,进而拓展其在表面涂层、生物医药、组织工程等领域中的应用.本文综述了近年来国内外基于天然萜类可持续性聚合物的研究进展,从萜类化合物的结构特点出发,系统介绍了基于天然萜类可持续性聚合物的合成策略、特性及应用.  相似文献   

13.
An original gas chromatographic method has been developed for simultaneous determination of major terpenes and cannabinoids in plant samples and their extracts. The main issues to be addressed were the large differences in polarity and volatility between both groups of analytes, but also the need for an exhaustive decarboxylation of cannabinoid acidic forms. Sample preparation was minimised, also by avoiding any analyte derivatisation. Acetone was found to be the most appropriate extraction solvent. Successful chromatographic separation was achieved by using a medium polarity column. Limits of detection ranged from 120 to 260 ng/mL for terpenes and from 660 to 860 ng/mL for cannabinoids. Parallel testing proved the results for cannabinoids are comparable to those obtained from established HPLC methods. Despite very large differences in concentrations between both analyte groups, a linear range between 1 and 100 µg/mL for terpenes and between 10 and 1500 µg/mL for cannabinoids was determined.  相似文献   

14.
This study investigated within-plant variability of the main bioactive compounds in rosemary (Rosmarinus officinalis L.). Volatile terpenes, including the enantiomeric distribution of monoterpenes, and phenols were analyzed in young and mature foliar, cortical and xylem tissues. In addition, antimicrobial activity of rosmarinic acid and selected terpenes was evaluated against two rosemary pathogens, Alternaria alternata and Pseudomonas viridiflava. Data showed that total concentration and relative contents of terpenes changed in relation to tissue source and age. Their highest total concentration was observed in the young leaves, followed by mature leaves, cortical and xylem tissues. Rosmarinic acid and carnosic acid contents did not show significant differences between leaf tissues of different ages, while young and mature samples showed variations in the content of four flavonoids. These results are useful for a more targeted harvesting of rosemary plants, in order to produce high-quality essential oils and phenolic extracts. Microbial tests showed that several terpenes and rosmarinic acid significantly inhibited the growth of typical rosemary pathogens. Overall, results on antimicrobial activity suggest the potential application of these natural compounds as biochemical markers in breeding programs aimed to select new chemotypes less susceptible to pathogen attacks, and as eco-friendly chemical alternatives to synthetic pesticides.  相似文献   

15.
Cannabis (Cannabis sativa L.) is a dioecious plant that produces both male and female inflorescences. In nature, male and female plants can be found with nearly equal frequency, which determines species out-crossing. In cannabis farming, only female plants are preferred due to their high yield of cannabinoids. In addition to unfavorable male plants, commercial production of cannabis faces the appearance of hermaphroditic inflorescences, species displaying both pistillate flowers and anthers. Such plants can out-cross female plants, simultaneously producing undesired seeds. The problem of hermaphroditic cannabis triggered a search for analytical tools that can be used for their rapid detection and identification. In this study, we investigate the potential of Raman spectroscopy (RS), an emerging sensing technique that can be used to probe plant biochemistry. Our results show that the biochemistry of male, female and hermaphroditic cannabis plants is drastically different which allows for their confirmatory identification using a hand-held Raman spectrometer. Furthermore, the coupling of machine learning approaches enables the identification of hermaphrodites with 98.7% accuracy, whereas both male and female plants can be identified with 100% accuracy. Considering the label-free, non-invasive and non-destructive nature of RS, the developed optical sensing approach can transform cannabis farming in the U.S. and overseas.  相似文献   

16.
Herb mixtures including cannabis among the other herbs have recently appeared. When cannabinoids from herb extracts are detected by chemical examinations such as gas chromatography/mass spectrometry, forensic analysts have to determine whether cannabis is actually in the mixture or the cannabinoids are spiked. Morphological examinations are time-consuming, since it is difficult to find several pieces of cannabis among a large number of herb pieces using a microscope. Here, we propose a procedure for efficiently searching for cannabis in herb mixtures using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI/IMS). Pieces of herb mixtures were spread on double-sided adhesive tape attached to a stainless steel plate. The pieces were then covered with a conductive sheet and pressed. After a solution containing a matrix reagent was sprayed, the distribution of cannabinoids in the sample was visualized by MALDI/IMS. Then, just the pieces with cannabinoids could be picked up selectively with tweezers and decolorized. Cystolith hairs and trichomes, which are characteristic of cannabis, were observed in most of these pieces using a biological microscope. This MALDI/IMS procedure enables cannabis to be found in herb mixtures without inefficient random sampling and microscopic morphological examination.  相似文献   

17.
Terpenes, wide-spread secondary plant metabolites, constitute important parts of many natural compounds that hold various biological activities, including antioxidant, calming, antiviral, and analgesic activities. Due to their high volatility and low solubility in water, studies of compounds based on terpenes are difficult, and methodologies must be adjusted to their specific characteristics. Considering the significant influence of iron ions on dementia development, the activity of terpenes in reducing Fe3+ represents an important area to be determined. Previously obtained results were unreliable because ferric-reducing antioxidant power (FRAP) methodology was not adjusted regarding studying terpenes. Taking this fact into account, the aim of this study was to optimize the method for monoterpene assessment. The study included three modifications, namely, (1) slightly adjusting the entire FRAP procedure, (2) replacing methanol with other solvents (heptane, butanone, or ethyl acetate), and (3) adding Tween 20. Additionally, a thin layer chromatography (TLC) -FRAP assay was performed. The obtained results revealed significant improvement in the reduction activity of selected terpenes (linalool, α-phellandrene, and α-terpinene) in studies with Tween 20, whereas replacing methanol with other solvents did not show the expected effects.  相似文献   

18.
The use of cannabis for medicinal/recreational purposes is widespread throughout the world. Smoke inhalation is known to cause airway irritation due to noxious substances (ie, benzene) within the mix. Thus, advanced vaporisation platforms (eg, Davinci IQ) have been developed to circumvent negative health implications. Here, we consider the impact that cannabis smoke and cannabis vapour have on simulated lung surfactant performance within a model pulmonary space (ie, 37°C, elevated humidity and related fluid hydrodynamics). In total, 50 mg of herbal material was ignited or placed within a Davinci IQ vaporiser with subsequent activation. The aliquots were collected and then analysed using gas chromatography-mass spectroscopy for composition and cannabinoid (eg, Δ9-tetrahydrocannabinol [Δ9-THC]) concentration. The average content within cannabis smoke was 2.84% (0.07%, SD) Δ9-THC, with the same for cannabis vapour being 0.88% (0.14%, SD). Aerosolised samples were transferred to the lung biosimulator. When compared with the pristine Curosurf system, challenge with cannabis smoke and cannabis vapour reduced the surface pressure term by 26% and 7% and increased film compressibility by 60% and 15% at 80% trough area, respectively. The net effect would be enhanced film elasticity and an increased work of breathing, being more pronounced on cannabis smoke inhalation. The trends noted were ascribed to two factors operating synergistically, namely the amount of Δ9-THC (plus others) within the aerosolised samples and the associated toxicity profile. Further research is required to establish mass-balance effects (ie, titrated outputs) along with detailed chemical profiling of material generated from the unrelated cannabis activation pathways.  相似文献   

19.
Hemp (Cannabis sativa L.) has become widely used in several sectors due to the presence of various bioactive compounds such as terpenes and cannabidiol. In general, terpenes and cannabidiol content is determined separately, which is time consuming. Thus, a fast gas chromatography with flame ionization detection method was validated for simultaneous determination of both terpenes and cannabidiol in hemp. The method enabled a rapid detection of 29 different terpenes and cannabidiol within a total analysis time of 16 min, with satisfactory sensitivity (limit of detection = 0.03–0.27 µg/mL, limit of quantitation = 0.10–0.89 µg/mL). The inter‐ and intraday precision (RSD) was <7.82 and <3.59%, respectively. Recoveries at two spiked concentration levels (low, 3.15 µg/mL; high, 20.0 µg/mL) were determined on both apical leaves (78.55–101.52%) and inflorescences (77.52–107.10%). The reproducibility (RSD) was <5.94 and <5.51% in apical leaves and inflorescences, respectively. The proposed and validated method is highly sensitive, robust, fast, and accurate for determination of the main terpenes and cannabidiol in hemp and could be routinely used for quality control.  相似文献   

20.
Hemp (Cannabis sativa L.) is a herbaceous anemophilous plant that belongs to the Cannabinaceae family. The cannabis seed (hemp) has long been utilized as a food source and is commercially important as an edible oil source. In this review, the positive and negative health effects of cannabis, the relationship between cannabis and various diseases, and the use of cannabis in various food products have been discussed. In addition, the scientific literature on the potential use of cannabis and its derivatives as a dietary supplement for the prevention and treatment of inflammatory and chronic degenerative diseases in animals and humans has been reviewed. Cannabis is being developed as a key ingredient in a variety of food items, including bakery, confectionery, beverages, dairy, fruits, vegetables, and meat. Hemp seeds are high in readily digestible proteins, lipids, polyunsaturated fatty acids (PUFA), insoluble fiber, carbs, and favorable omega-6 PUFA acid to omega-3 PUFA ratio and have high nutritional value. The antioxidants of cannabis, such as polyphenols, help with anxiety, oxidative stress, and the risk of chronic illnesses, including cancer, neurological disorders, digestive problems, and skin diseases. Cannabis has been shown to have negative health impacts on the respiratory system, driving, and psychomotor functions, and the reproductive system. Overall, the purpose of this research is to stimulate more in-depth research on cannabis’s adaptation in various foods and for the treatment of chronic illnesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号