首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapidly growing antimicrobial resistance among clinically important bacterial and fungal pathogens accounts for high morbidity and mortality worldwide. Therefore, it is critical to look for new small molecules targeting multidrug-resistant pathogens. Herein, in this paper we report a synthesis, ADME properties, and in vitro antimicrobial activity characterization of novel thiazole derivatives bearing β-amino acid, azole, and aromatic moieties. The in silico ADME characterization revealed that compounds 1–9 meet at least 2 Lipinski drug-like properties while cytotoxicity studies demonstrated low cytotoxicity to Vero cells. Further in vitro antimicrobial activity characterization showed the selective and potent bactericidal activity of 2a–c against Gram-positive pathogens (MIC 1–64 µg/mL) with profound activity against S. aureus (MIC 1–2 µg/mL) harboring genetically defined resistance mechanisms. Furthermore, the compounds 2a–c exhibited antifungal activity against azole resistant A. fumigatus, while only 2b and 5a showed antifungal activity against multidrug resistant yeasts including Candida auris. Collectively, these results demonstrate that thiazole derivatives 2a–c and 5a could be further explored as a promising scaffold for future development of antifungal and antibacterial agents targeting highly resistant pathogenic microorganisms.  相似文献   

2.
The reaction of 5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thione 3 with formaldehyde solution and primary aromatic amines or 1-substituted piperazines, in ethanol at room temperature yielded the corresponding N-Mannich bases 3-arylaminomethyl-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thiones 4a–l or 3-[(4-substituted piperazin-1-yl)methyl]-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thiones 5a–d, respectively. The in vitro inhibitory activity of compounds 4a–l and 5a–d was assessed against pathogenic Gram-positive, Gram-negative bacteria, and the yeast-like pathogenic fungus Candida albicans. The piperazinomethyl derivatives 5c and 5d displayed broad-spectrum antibacterial activities the minimal inhibitory concentration (MIC) 0.5–8 μg/mL) and compounds 4j, 4l, 5a, and 5b showed potent activity against the tested Gram-positive bacteria. In addition, the anti-proliferative activity of the compounds was evaluated against prostate cancer (PC3), human colorectal cancer (HCT-116), human hepatocellular carcinoma (HePG-2), human epithelioid carcinoma (HeLa), and human breast cancer (MCF7) cell lines. The optimum anti-proliferative activity was attained by compounds 4l, 5a, 5c, and 5d.  相似文献   

3.
In this study, thiazole derivatives containing Schiff bases ( 7a , 7b , 7c , 7d , 7e , 7f , 8a , 8b , 8c , 8d , 8e , 8f , 9a , 9b , 9c , 9d , 9e , 9f ) were synthesized in moderate to high yields (49–94%) using the Hantzsch reaction with thiosemicarbazone derivatives ( 5a , 5b , 5c ) and 2‐bromo‐1‐phenylethanone derivatives ( 6a , 6b , 6c , 6d , 6e , 6f ). The structures of synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses, mass spectroscopy and X‐ray diffraction analysis techniques. Moreover, the synthesized compounds were tested for their in vitro antifungal activity and most of them exhibited moderate to good activity against Fusariumoxysporumf.sp. lycopersici.   相似文献   

4.
Thiazoles are important scaffolds in organic chemistry. Biosynthesis of thiazoles is considered to be an excellent target for the design of novel classes of therapeutic agents. In this study, a new series of 2-ethylidenehydrazono-5-arylazothiazoles 5a–d and 2-ethylidenehydrazono-5-arylazo- thiazolones 8a–d were synthesized via the cyclocondensation reaction of the appropriate hydrazonyl halides 4a–d and 7a–d with ethylidene thiosemicarbazide 3, respectively. Furthermore, the thiosemicarbazide derivative 3 was reacted with different bromoacetyl compounds 10–12 to afford the respective thiazole derivatives 13–15. Chemical composition of the novel derivatives was established on bases of their spectral data (FTIR, 1H-NMR, 13C-NMR and mass spectrometry) and microanalytical data. The newly synthesized derivatives were screened for their in vitro anti-hepatic cancer potency using an MTT assay. Moreover, an in silico technique was used to assess the interaction modes of the compounds with the active site of Rho6 protein. The docking studies of the target Rho6 with the newly synthesized fourteen compounds showed good docking scores with acceptable binding interactions. The presented results revealed that the newly synthesized compounds exhibited promising inhibition activity against hepatic cancer cell lines (HepG2).  相似文献   

5.
3-acetyl coumarin derivatives (1a-d) are formed as a result of condensation of salicylaldehyde derivatives and ethyl acetoacetate and were converted into coumarin-selenophene hybrid compounds (2a-d) in the basic medium by modified Gewald reaction in the presence of malononitrile and selenium. Products are characterized by nuclear magnetic resonance (NMR). The prepared compounds are screened for their anticancer activity against DU-145 cell line. In addition, selected target compounds are evaluated for apoptosis and oxidative stress on DU-145 (prostate carcinoma) cell lines.  相似文献   

6.
Since the time of its appearance until present, COVID-19 has spread worldwide, with over 71 million confirmed cases and over 1.6 million deaths reported by the World Health Organization (WHO). In addition to the fact that cases of COVID-19 are increasing worldwide, the Delta and Omicron variants have also made the situation more challenging. Herein, we report the evaluation of several thiazole/thiadiazole/benzothiazole based thiazolidinone derivatives which were chosen from 112 designed derivatives by docking as potential molecules to inhibit the main protease of SARS-CoV-2. The contained experimental data revealed that among the fifteen compounds chosen, five compounds (k3, c1, n2, A2, A1) showed inhibitory activity with IC50 within the range of 0.01–34.4 μΜ. By assessing the cellular effects of these molecules, we observed that they also had the capacity to affect the cellular viability of human normal MRC-5 cells, albeit with a degree of variation. More specifically, k3 which is the most promising compound with the higher inhibitory capacity to SARS-CoV-2 protease (0.01 μΜ) affects in vitro cellular viability only by 57% at the concentration of 0.01 μM after 48 h in culture. Overall, these data provide evidence on the potential antiviral activity of these molecules to inhibit the main protease of SARS-CoV-2, a fact that sheds light on the chemical structure of the thiazole/thiadiazole/benzothiazole based thiazolidin-4-one derivatives as potential candidates for COVID-19 therapeutics.  相似文献   

7.
A novel series of proflavine ureas, derivatives 11a–11i, were synthesized on the basis of molecular modeling design studies. The structure of the novel ureas was obtained from the pharmacological model, the parameters of which were determined from studies of the structure-activity relationship of previously prepared proflavine ureas bearing n-alkyl chains. The lipophilicity (LogP) and the changes in the standard entropy (ΔS°) of the urea models, the input parameters of the pharmacological model, were determined using quantum mechanics and cheminformatics. The anticancer activity of the synthesized derivatives was evaluated against NCI-60 human cancer cell lines. The urea derivatives azepyl 11b, phenyl 11c and phenylethyl 11f displayed the highest levels of anticancer activity, although the results were only a slight improvement over the hexyl urea, derivative 11j, which was reported in a previous publication. Several of the novel urea derivatives displayed GI50 values against the HCT-116 cancer cell line, which suggest the cytostatic effect of the compounds azepyl 11b–0.44 μM, phenyl 11c–0.23 μM, phenylethyl 11f–0.35 μM and hexyl 11j–0.36 μM. In contrast, the novel urea derivatives 11b, 11c and 11f exhibited levels of cytotoxicity three orders of magnitude lower than that of hexyl urea 11j or amsacrine.  相似文献   

8.
A series of novel multi-substituted coumarin derivatives were synthesized, spectroscopically characterized, and evaluated for their antioxidant activity, soybean lipoxygenase (LOX) inhibitory ability, their influence on cell viability in immortalized human keratinocytes (HaCaT), and cytotoxicity in adenocarcinomic human alveolar basal epithelial cells (A549) and human melanoma (A375) cells, in vitro. Coumarin analogues 4a–4f, bearing a hydroxyl group at position 5 of the coumarin scaffold and halogen substituents at the 3-phenyl ring, were the most promising ABTS•+ scavengers. 6,8-Dibromo-3-(4-hydroxyphenyl)-4-methyl-chromen-2-one (4k) and 6-bromo-3-(4,5-diacetyloxyphenyl)-4-methyl-chromen-2-one (3m) exhibited significant lipid peroxidation inhibitory activity (IC50 36.9 and 37.1 μM). In the DCF-DA assay, the 4′-fluoro-substituted compound 3f (100%), and the 6-bromo substituted compounds 3i (80.9%) and 4i (100%) presented the highest activity. The 3′-fluoro-substituted coumarins 3e and 4e, along with 3-(4-acetyloxyphenyl)-6,8-dibromo-4-methyl-chromen-2-one (3k), were the most potent lipoxygenase (LOX) inhibitors (IC50 11.4, 4.1, and 8.7 μM, respectively) while displaying remarkable hydroxyl radical scavenging ability, 85.2%, 100%, and 92.9%, respectively. In silico docking studies of compounds 4e and 3k, revealed that they present allosteric interactions with the enzyme. The majority of the analogues (100 μΜ) did not affect the cell viability of HaCaT cells, though several compounds presented over 60% cytotoxicity in A549 or A375 cells. Finally, the human oral absorption (%HOA) and plasma protein binding (%PPB) properties of the synthesized coumarins were also estimated using biomimetic chromatography, and all compounds presented high %HOA (>99%) and %PPB (60–97%) values.  相似文献   

9.
Compounds bearing thiazole and chalcone pharmacophores have been reported to possess excellent antitubercular and anticancer activities. In view of this, we designed, synthesized and characterized a novel series of thiazole–chalcone hybrids (1–20) and further evaluated them for antitubercular and antiproliferative activities by employing standard protocols. Among the twenty compounds, chalcones 12 and 7, containing 2,4-difluorophenyl and 2,4-dichlorophenyl groups, showed potential antitubercular activity higher than the standard pyrazinamide (MIC = 25.34 µM) with MICs of 2.43 and 4.41 µM, respectively. Chalcone 20 containing heteroaryl 2-thiazolyl moiety exhibited promising antiproliferative activity against the prostate cancer cell line (DU-145), higher than the standard methotrexate (IC50 = 11 ± 1 µM) with an IC50 value of 6.86 ± 1 µM. Furthermore, cytotoxicity studies of these compounds against normal human liver cell lines (L02) revealed that the target molecules were comparatively less selective against L02. Additional computational studies using AutoDock predicted the key binding interactions responsible for the activity and the SwissADME tool computed the in silico drug likeliness properties. The lead compounds generated through this study, create a way for the optimization and development of novel drugs against tuberculosis infections and prostate cancer.  相似文献   

10.
Betulinic acid (BA) and its derivatives exhibit a variety of biological activities, especially their anti-HIV-1 activity, but generally have only modest inhibitory potency against influenza virus. The entry of influenza virus into host cells can be competitively inhibited by multivalent derivatives targeting hemagglutinin. In this study, a series of hexa-, hepta- and octavalent BA derivatives based on α-, β- and γ-cyclodextrin scaffolds, respectively, with varying lengths of flexible oligo(ethylene glycol) linkers was designed and synthesized using a microwave-assisted copper-catalyzed 1,3-dipolar cycloaddition reaction. The generated BA-cyclodextrin conjugates were tested for their in vitro activity against influenza A/WSN/33 (H1N1) virus and cytotoxicity. Among the tested compounds, 58, 80 and 82 showed slight cytotoxicity to Madin-Darby canine kidney cells with viabilities ranging from 64 to 68% at a high concentration of 100 μM. Four conjugates 51 and 69–71 showed significant inhibitory effects on influenza infection with half maximal inhibitory concentration values of 5.20, 9.82, 7.48 and 7.59 μM, respectively. The structure-activity relationships of multivalent BA-cyclodextrin conjugates were discussed, highlighting that multivalent BA derivatives may be potential antiviral agents against influenza infection.  相似文献   

11.
The p-aminobenzoic acid was applied for the synthesis of substituted 1-phenyl-5-oxopyrrolidine derivatives containing benzimidazole, azole, oxadiazole, triazole, dihydrazone, and dithiosemicarbazide moieties in the structure. All the obtained compounds were evaluated for their in vitro antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Salmonella enteritidis, Escherichia coli, and Pseudomonas aeruginosa by using MIC and MBC assays. This study showed a good bactericidal activity of γ-amino acid and benzimidazoles derivatives. The antimicrobial activity of the most promising compounds was higher than ampicillin. Furthermore, two benzimidazoles demonstrated good antimicrobial activity against L. monocytogenes (MIC 15.62 µg/mL) that was four times more potent than ampicillin (MIC 65 µg/mL). Further studies are needed to better understand the mechanism of the antimicrobial activity as well as to generate antimicrobial compounds based on the 1-phenyl-5-oxopyrrolidine scaffold.  相似文献   

12.
2-azido-1H-benzo[d]imidazole derivatives 1a,b were reacted with a β-ketoester such as acetylacetone in the presence of sodium ethoxide to obtain the desired molecules 2a,b. The latter acted as a key molecule for the synthesis of new carbazone derivatives 4a,b that were submitted to react with 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride to obtain the target thiadiazole derivatives 6a,b. The structures of the newly synthesized compounds were inferred from correct spectral and microanalytical data. Moreover, the newly prepared compounds were subjected to molecular docking studies with DNA gyrase B and exhibited binding energy that extended from −9.8 to −6.4 kcal/mol, which confirmed their excellent potency. The compounds 6a,b were found to be with the minimum binding energy (−9.7 and −9.8 kcal/mol) as compared to the standard drug ciprofloxacin (−7.4 kcal/mol) against the target enzyme DNA gyrase B. In addition, the newly synthesized compounds were also examined and screened for their in vitro antimicrobial activity against pathogenic microorganisms Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Among the newly synthesized molecules, significant antimicrobial activity against all the tested microorganisms was obtained for the compounds 6a,b. The in silico and in vitro findings showed that compounds 6a,b were the most active against bacterial strains, and could serve as potential antimicrobial agents.  相似文献   

13.
A novel, facile reaction for the synthesis of series of bis‐thiazole derivatives has been developed from the reaction of the appropriate thiosemicarbazone derivatives and bis‐2‐bromoacetylthieno[2,3‐b ]thiophene derivatives in ethanol under reflux. The structures of the newly synthesized products were established on the basis of spectral data (mass, IR, and 1H and 13C NMR) and elemental analyses. Fifteen compounds of the synthesized compounds were evaluated for their anticancer activity against human liver hepatocellular carcinoma cell line (HepG2). All compounds showed anticancer activity but differs in potency comparable with the reference drug Cisplatin. Moreover, molecular docking study using MOE software predicted the best binding mode between the most active compound 5o into the active site of human heat‐shock protein 90. The computational studies are confirming the results in biological activity.  相似文献   

14.
As cancer remains one of the major health burdens worldwide, novel agents, due to the development of resistance, are needed. In this work, we designed and synthesized harmirins, which are hybrid compounds comprising harmine and coumarin scaffolds, evaluated their antiproliferative activity, and conducted cell localization and cell cycle analysis experiments. Harmirins were prepared from the corresponding alkynes and azides under mild reaction conditions using Cu(I) catalyzed azide–alkyne cycloaddition, leading to the formation of the 1H-1,2,3-triazole ring. Antiproliferative activity of harmirins was evaluated in vitro against four human cancer cell lines (MCF-7, HCT116, SW620, and HepG2) and one human non-cancer cell line (HEK293T). The most pronounced activities were exerted against MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range), while the most selective harmirins were 5b and 12b, substituted at C-3 and O-7 of the β-carboline core and bearing methyl substituent at position 6 of the coumarin ring (SIs > 7.2). Further experiments demonstrated that harmirin 12b is localized exclusively in the cytoplasm. In addition, it induced a strong G1 arrest and reduced the percentage of cells in the S phase, suggesting that it might exert its antiproliferative activity through inhibition of DNA synthesis, rather than DNA damage. In conclusion, harmirin 12b is a novel harmine and coumarin hybrid with significant antiproliferative activity and warrants further evaluation as a potential anticancer agent.  相似文献   

15.
姜黄素-N-取代吡唑类衍生物合成及抑菌活性   总被引:1,自引:0,他引:1  
为了寻求杀菌剂的新的先导化合物,用姜黄素与取代酰肼反应得到13个新的姜黄素-N-取代吡唑类衍生物,其结构经IR,1H NMR,13C NMR,MS和元素分析所表征,初步抑菌实验结果表明,在1×10-4mol/L浓度下,所有衍生物与姜黄素对比,对枯草杆菌、金黄色葡萄球菌、大肠杆菌、青霉、黑霉有较好的抑菌效果.其中,3,5-二(4-羟基-3-甲氧基苯基乙烯基)-N-脒基吡唑(3c),3,5-二(4-羟基-3-甲氧基苯基乙烯基)-N-(苯并噻唑-2-硫基乙酰基)吡唑(3k),3,5-二(4-羟基-3-甲氧基苯基乙烯基)-N-(香豆素-3-甲酰基)吡唑(3m)有优异的抑菌效果(抑菌圈16.34~23.81 mm).这些结果表明含有噻唑环、脒基、香豆素环取代基可能有助于提高姜黄素-N-取代吡唑类衍生物的活性.  相似文献   

16.
A total of fourteen pyrazoline derivatives were synthesized through cyclo-condensation reactions by chalcone derivatives with different types of semicarbazide. These compounds were characterized by IR, 1D-NMR (1H, 13C and Distortionless Enhancement by Polarization Transfer - DEPT-135) and 2D-NMR (COSY, HSQC and HMBC) as well as mass spectroscopy analysis (HRMS). The synthesized compounds were tested for their antituberculosis activity against Mycobacterium tuberculosis H37Ra in vitro. Based on this activity, compound 4a showed the most potent inhibitory activity, with a minimum inhibitory concentration (MIC) value of 17 μM. In addition, six other synthesized compounds, 5a and 5c–5g, exhibited moderate activity, with MIC ranges between 60 μM to 140 μM. Compound 4a showed good bactericidal activity with a minimum bactericidal concentration (MBC) value of 34 μM against Mycobacterium tuberculosis H37Ra. Molecular docking studies for compound 4a on alpha-sterol demethylase was done to understand and explore ligand–receptor interactions, and to hypothesize potential refinements for the compound.  相似文献   

17.
A series of fluorinated 7-hydroxycoumarin derivatives containing an oxime ether moiety have been designed, synthesized and evaluated for their antifungal activity. All the target compounds were determined by 1H-NMR, 13C-NMR, FTIR and HR-MS spectra. The single-crystal structures of compounds 4e, 4h, 5h and 6c were further confirmed using X-ray diffraction. The antifungal activities against Botrytis cinerea (B. cinerea), Alternaria solani (A. solani), Gibberella zeae (G. zeae), Rhizoctorzia solani (R. solani), Colletotrichum orbiculare (C. orbiculare) and Alternaria alternata (A. alternata) were evaluated in vitro. The preliminary bioassays showed that some of the designed compounds displayed the promising antifungal activities against the above tested fungi. Strikingly, the target compounds 5f and 6h exhibited outstanding antifungal activity against B. cinerea at 100 μg/mL, with the corresponding inhibition rates reached 90.1 and 85.0%, which were better than the positive control Osthole (83.6%) and Azoxystrobin (46.5%). The compound 5f was identified as the promising fungicide candidate against B. cinerea with the EC50 values of 5.75 μg/mL, which was obviously better than Osthole (33.20 μg/mL) and Azoxystrobin (64.95 μg/mL). Meanwhile, the compound 5f showed remarkable antifungal activities against R. solani with the EC50 values of 28.96 μg/mL, which was better than Osthole (67.18 μg/mL) and equivalent to Azoxystrobin (21.34 μg/mL). The results provide a significant foundation for the search of novel fluorinated 7-hydroxycoumarin derivatives with good antifungal activity.  相似文献   

18.
The reaction of 3,4-dichlorophenyl-1,3,4-oxadiazole-2( 3H )-thione with piperidine derivatives via Mannich reaction was used to generate eleven novel compounds in moderate to good yields. Synthesized molecules were characterized according to their structure with 1H NMR, 13C NMR and FT-IR spectral foundations, which were compatible with literature informations. Antimicrobial activity and cytotoxicity studies were done by disc diffusion and NCI-60 sulphordamine B assay methods. The antimicrobial test results revealed that synthesized compounds have better activity against gram-positive species than gram-negative ones. A total analysis of the antibacterial, antifungal, and antiyeast activity revealed that newly synthesized compounds were really active against Bacillus cereus , Bacillus ehimensis, and Bacillus thuringiensis species . For cytotoxicity, among three different cancer cell lines (HCT116, MCF7, HUH7) compounds 5c, 5d, 5e, 5f, 5g, 5i, 5j and 5k were seemed especially effective on HUH7 cancer cell line via moderate to good activity. More significantly, against liver carcinoma cell line (HUH7) most of the compounds of the series ( 5c-5g and 5i-5j ) have better IC50 values (IC50= 18.78 µM) than 5-Florouracil (5-FU) and also compound 5d possessed 10.1 µM value, which represents good druggable cytotoxic activity. Further, the molecules were also screened for in silico chemoinformatic and toxicity data to gather the predicted bioavailibity and safety measurements.  相似文献   

19.
Glycyrrhetinic acid (GA) is one of many interesting pentacyclic triterpenoids showing significant anticancer activity by triggering apoptosis in tumor cell lines. This study deals with the design and synthesis of new glycyrrhetinic acid (GA)–amino acid peptides and peptide ester derivatives. The structures of the new derivatives were established through various spectral and microanalytical data. The novel compounds were screened for their in vitro cytotoxic activity. The evaluation results showed that the new peptides produced promising cytotoxic activity against the human breast MCF-7 cancer cell line while comparing to doxorubicin. On the other hand, only compounds 3, 5, and 7 produced potent activity against human colon HCT-116 cancer cell line. The human liver cancer (HepG-2) cell line represented a higher sensitivity to peptide 7 (IC50; 3.30 μg/mL), while it appeared insensitive to the rest of the tested peptides. Furthermore, compounds 1, 3, and 5 exhibited a promising safety profile against human normal skin fibroblasts cell line BJ-1. In order to investigate the mode of action, compound 5 was selected as a representative example to study its in vitro effect against the apoptotic parameters and Bax/BCL-2/p53/caspase-7/caspase-3/tubulin, and DNA fragmentation to investigate beta (TUBb). Additionally, all the new analogues were subjected to antimicrobial assay against a panel of Gram-positive and Gram-negative bacteria and the yeast candida Albicans. All the tested GA analogues 1–8 exhibited more antibacterial effect against Micrococcus Luteus than gentamicin, but they exhibited moderate antimicrobial activity against the tested bacterial and yeast strains. Molecular docking studies were also simulated for compound 5 to give better rationalization and put insight to the features of its structure.  相似文献   

20.
Chromone and coumarin derivatives exhibit a wide spectrum of biological activity, including spasmolytic, antiarrhythmic, cardiothonic, antiviral, and anticancer properties. Phosphorus-containing chromone and coumarin derivatives form a novel group of compounds, possessing remarkable cytotoxicity and alkylating and anticancer activity against selected tumor cell lines. Derivatives containing a phosphorus atom at position 2 of a γ-pyrone ring are known to be efficient antibacterial agents.

This review presents methods developed for the synthesis of derivatives of chromone and coumarin that contain a phosphonate moiety. Among them, the reaction of derivatives of 2-hydroxyacetophenone with phosphonic compounds is the one most frequently used. Some analogues were characterized by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号