首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date, some succeeding variants of SARS-CoV-2 have become more contagious. This virus is known to enter human cells by binding the receptor-binding domain (RBD) of spike protein with the angiotensin-converting enzyme 2 (ACE2), the latter being a membrane protein that regulates the renin–angiotensin system. Since the host cell receptor plays a critical role in viral entry, inhibition of the RBD–ACE2 complex is a promising strategy for preventing COVID-19 infection. In the present communication, we propose and utilize an approach based on the generation of a complex of pharmacophore models and subsequent Induced Fit Docking (IFD) to identify potential inhibitors of the main binding sites of the Omicron SARS-CoV-2 RBD(S1)–ACE2 complex (PDB ID: 7T9L) among a number of natural products of various types and origins. Several natural compounds have been found to provide a high affinity for the receptor of interest. It is expected that the present results will stimulate further research aimed at the development of specialized drugs against this virus.  相似文献   

2.
The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019, and there is no sign that the epidemic is abating. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. In this study, surface plasmon resonance (SPR) was used as the primary method to screen a library of 960 compounds. A compound 02B05 (demethylzeylasteral, CAS number: 107316-88-1) that had high affinities for S-RBD and ACE2 was discovered, and binding affinities (KD, μM) of 02B05-ACE2 and 02B05-S-RBD were 1.736 and 1.039 μM, respectively. The results of a competition experiment showed that 02B05 could effectively block the binding of S-RBD to ACE2 protein. Furthermore, pseudovirus infection assay revealed that 02B05 could inhibit entry of SARS-CoV-2 pseudovirus into 293T cells to a certain extent at nontoxic concentration. The compoundobtained in this study serve as references for the design of drugs which have potential in the treatment of COVID-19 and can thus accelerate the process of developing effective drugs to treat SARS-CoV-2 infections.  相似文献   

3.
The structure, size, and main physicochemical characteristics of the SARS-CoV-2 virion with the spike transmembrane protein corona were discussed. Using these data, diffusion coefficients of the virion in aqueous media and in air were calculated. The structure and dimensions of the spike protein derived from molecular dynamic modeling and thorough cryo-electron microscopy measurements were also analyzed. The charge distribution over the molecule was calculated and shown to be largely heterogeneous. Although the stalk part is negatively charged, the top part of the spike molecule, especially the receptor binding domain, remains positively charged for a broad range of pH. It is underlined that such a charge distribution promotes the spike corona stability and enhances the virion attachment to receptors and surfaces, mostly negatively charged. The review is completed by the analysis of experimental data pertinent to the spike protein adsorption at abiotic surfaces comprising nanoparticle carrier particles. It is argued that these theoretical and experimental data can be used for developing quantitative models of virus attachment to surfaces, facilitating adequate analysis of future experimental results.  相似文献   

4.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) global pandemic. The first step of viral infection is cell attachment, which is mediated by the binding of the SARS-CoV-2 receptor binding domain (RBD), part of the virus spike protein, to human angiotensin-converting enzyme 2 (ACE2). Therefore, drug repurposing to discover RBD-ACE2 binding inhibitors may provide a rapid and safe approach for COVID-19 therapy. Here, we describe the development of an in vitro RBD-ACE2 binding assay and its application to identify inhibitors of the interaction of the SARS-CoV-2 RBD to ACE2 by the high-throughput screening of two compound libraries (LOPAC®1280 and DiscoveryProbeTM). Three compounds, heparin sodium, aurintricarboxylic acid (ATA), and ellagic acid, were found to exert an effective binding inhibition, with IC50 values ranging from 0.6 to 5.5 µg/mL. A plaque reduction assay in Vero E6 cells infected with a SARS-CoV-2 surrogate virus confirmed the inhibition efficacy of heparin sodium and ATA. Molecular docking analysis located potential binding sites of these compounds in the RBD. In light of these findings, the screening system described herein can be applied to other drug libraries to discover potent SARS-CoV-2 inhibitors.  相似文献   

5.
Dr. Maria Gil-Moles  Sebastian Türck  Dr. Uttara Basu  Dr. Andrea Pettenuzzo  Dr. Saurav Bhattacharya  Ananthu Rajan  Xiang Ma  Rolf Büssing  Jessica Wölker  Dr. Hilke Burmeister  Henrik Hoffmeister  Pia Schneeberg  Andre Prause  Petra Lippmann  Josephine Kusi-Nimarko  Dr. Storm Hassell-Hart  Dr. Andrew McGown  Dr. Daniel Guest  Dr. Yan Lin  Dr. Anna Notaro  Dr. Robin Vinck  Dr. Johannes Karges  Dr. Kevin Cariou  Dr. Kun Peng  Dr. Xue Qin  Dr. Xing Wang  Dr. Joanna Skiba  Dr. Łukasz Szczupak  Prof. Dr. Konrad Kowalski  Prof. Dr. Ulrich Schatzschneider  Dr. Catherine Hemmert  Prof. Dr. Heinz Gornitzka  Prof. Dr. Elena R. Milaeva  Dr. Alexey A. Nazarov  Prof. Dr. Gilles Gasser  Prof. Dr. John Spencer  Dr. Luca Ronconi  Prof. Dr. Ulrich Kortz  Prof. Dr. Jindrich Cinatl  Prof. Dr. Denisa Bojkova  Prof. Dr. Ingo Ott 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(71):17928-17940
The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has called for an urgent need for dedicated antiviral therapeutics. Metal complexes are commonly underrepresented in compound libraries that are used for screening in drug discovery campaigns, however, there is growing evidence for their role in medicinal chemistry. Based on previous results, we have selected more than 100 structurally diverse metal complexes for profiling as inhibitors of two relevant SARS-CoV-2 replication mechanisms, namely the interaction of the spike (S) protein with the ACE2 receptor and the papain-like protease PLpro. In addition to many well-established types of mononuclear experimental metallodrugs, the pool of compounds tested was extended to approved metal-based therapeutics such as silver sulfadiazine and thiomersal, as well as polyoxometalates (POMs). Among the mononuclear metal complexes, only a small number of active inhibitors of the S/ACE2 interaction was identified, with titanocene dichloride as the only strong inhibitor. However, among the gold and silver containing complexes many turned out to be very potent inhibitors of PLpro activity. Highly promising activity against both targets was noted for many POMs. Selected complexes were evaluated in antiviral SARS-CoV-2 assays confirming activity for gold complexes with N-heterocyclic carbene (NHC) or dithiocarbamato ligands, a silver NHC complex, titanocene dichloride as well as a POM compound. These studies might provide starting points for the design of metal-based SARS-CoV-2 antiviral agents.  相似文献   

6.
Aerosol transmission constitutes one of the major transmission routes of the SARS-CoV-2 pathogen. Due to the pathogen’s properties, research on its airborne transmission has some limitations. This paper focuses on silica nanoparticles (SiO2) of 40 and 200 nm sizes as the physicochemical markers of a single SARS-CoV-2 particle enabling experiments on the transmission of bioaerosols in public spaces. Mixtures of a determined silica concentration were sprayed on as an aerosol, whose particles, sedimented on dedicated matrices, were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Since it was not possible to quantitatively identify the markers based on the obtained images, the filters exposed with the AirSampler aspirator were analyzed based on inductively coupled plasma optical emission spectroscopy (ICP-OES). The ICP-OES method enabled us to determine the concentration of silica after extracting the marker from the filter, and consequently to estimate the number of markers. The developed procedure opens up the possibility of the quantitative estimation of the spread of the coronavirus, for example in studies on the aerosol transmission of the pathogen in an open environment where biological markers—surrogates included—cannot be used.  相似文献   

7.
A serious pandemic has been caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The interaction between spike surface viral protein (Sgp) and the angiotensin-converting enzyme 2 (ACE2) cellular receptor is essential to understand the SARS-CoV-2 infectivity and pathogenicity. Currently, no drugs are available to treat the infection caused by this coronavirus and the use of antimicrobial peptides (AMPs) may be a promising alternative therapeutic strategy to control SARS-CoV-2. In this study, we investigated the in silico interaction of AMPs with viral structural proteins and host cell receptors. We screened the antimicrobial peptide database (APD3) and selected 15 peptides based on their physicochemical and antiviral properties. The interactions of AMPs with Sgp and ACE2 were performed by docking analysis. The results revealed that two amphibian AMPs, caerin 1.6 and caerin 1.10, had the highest affinity for Sgp proteins while interaction with the ACE2 receptor was reduced. The effective AMPs interacted particularly with Arg995 located in the S2 subunits of Sgp, which is key subunit that plays an essential role in viral fusion and entry into the host cell through ACE2. Given these computational findings, new potentially effective AMPs with antiviral properties for SARS-CoV-2 were identified, but they need experimental validation for their therapeutic effectiveness.  相似文献   

8.
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus that causes severe respiratory syndrome in humans, which is now referred to as coronavirus disease 2019 (COVID-19). Since December 2019, the new pathogen has rapidly spread globally, with over 65 million cases reported to the beginning of December 2020, including over 1.5 million deaths. Unfortunately, currently, there is no specific and effective treatment for COVID-19. As SARS-CoV-2 relies on its spike proteins (S) to bind to a host cell-surface receptor angiotensin-converting enzyme-2(ACE2), and this interaction is proved to be responsible for entering a virus into host cells, it makes an ideal target for antiviral drug development. In this work, we design three very short peptides based on the ACE2 sequence/structure fragments, which may effectively bind to the receptor-binding domain (RBD) of S protein and may, in turn, disrupt the important virus-host protein–protein interactions, blocking early steps of SARS-CoV-2 infection. Two of our peptides bind to virus protein with affinity in nanomolar range, and as very short peptides have great potential for drug development.  相似文献   

9.
Before entering the cell, the SARS-CoV-2 spike glycoprotein receptor-binding domain (RBD) binds to the human angiotensin-converting enzyme 2 (hACE2) receptor. Hence, this RBD is a critical target for the development of antiviral agents. Recent studies have discovered that SARS-CoV-2 variants with mutations in the RBD have spread globally. The purpose of this in silico study was to determine the potential of a fruit bromelain-derived peptide. DYGAVNEVK. to inhibit the entry of various SARS-CoV-2 variants into human cells by targeting the hACE binding site within the RBD. Molecular docking analysis revealed that DYGAVNEVK interacts with several critical RBD binding residues responsible for the adhesion of the RBD to hACE2. Moreover, 100 ns MD simulations revealed stable interactions between DYGAVNEVK and RBD variants derived from the trajectory of root-mean-square deviation (RMSD), radius of gyration (Rg), and root-mean-square fluctuation (RMSF) analysis, as well as free binding energy calculations. Overall, our computational results indicate that DYGAVNEVK warrants further investigation as a candidate for preventing SARS-CoV-2 due to its interaction with the RBD of SARS-CoV-2 variants.  相似文献   

10.
11.
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a newly emerging infectious pathogen causing coronavirus disease 2019 (COVID-19). The virus primarily infects cells via its spike glycoprotein, which is cleaved into S1 and S2 subunits to aid in cell attachment and membrane fusion, respectively. Heptad repeat 1 (HR1) and heptad repeat 2 (HR2) of the S2 subunit are essential for membrane fusion, culminating in an expected six-helix bundle termed fusion core. To better understand the structural and biophysical features of the SARS-CoV-2 fusion core, we designed, constructed, and bacterially produced a recombinant single-chain HR1-L6-HR2 protein and conducted a series of biochemical and biophysical experiments. Our findings demonstrate that the HR1-L6-HR2 protein spontaneously assembles into a highly stable trimeric complex, further confirmed by x-ray crystallographic analysis. The crystal structure of the fusion core reveals a trimeric coiled-coil structure of HR1 antiparallelly surrounded by three HR2 to form a six-helical bundle. Additionally, four residues of HR1 that contribute to binding with HR2 through the formation of hydrogen bonds and salt bridges were observed. These results indicate that the SARS-CoV-2 fusion core exhibits similar characteristics to other class I viral glycoproteins, suggesting potential for drug repurposing as an alternative strategy to combat COVID-19.  相似文献   

12.
COVID-19 caused by SARS-COV-2 is continuing to surge globally. The spike (S) protein is the key protein of SARS-COV-2 that recognizes and binds to the host target ACE2. In this study, molecular dynamics simulation was used to elucidate the allosteric effect of the S protein. Binding of ACE2 caused a centripetal movement of the receptor-binding domain of the S protein. The dihedral changes in Phe329 and Phe515 played a key role in this process. Two potential cleavage sites S1/S2 and S2′ were exposed on the surface after the binding of ACE2. The binding affinity of SARS-COV-2 S protein and ACE2 was higher than that of SARS-COV. This was mainly due to the mutation of Asp480 in SARS-COV to Ser494 in SARS-COV-2, which greatly weakened the electrostatic repulsion. The result provides a theoretical basis for the SARS-COV-2 infection and aids the development of biosensors and detection reagents.  相似文献   

13.
The rapid spread of SARS-CoV-2 required immediate actions to control the transmission of the virus and minimize its impact on humanity. An extensive mutation rate of this viral genome contributes to the virus’ ability to quickly adapt to environmental changes, impacts transmissibility and antigenicity, and may facilitate immune escape. Therefore, it is of great interest for researchers working in vaccine development and drug design to consider the impact of mutations on virus-drug interactions. Here, we propose a multitarget drug discovery pipeline for identifying potential drug candidates which can efficiently inhibit the Receptor Binding Domain (RBD) of spike glycoproteins from different variants of SARS-CoV-2. Eight homology models of RBDs for selected variants were created and validated using reference crystal structures. We then investigated interactions between host receptor ACE2 and RBDs from nine variants of SARS-CoV-2. It led us to conclude that efficient multi-variant targeting drugs should be capable of blocking residues Q(R)493 and N487 in RBDs. Using methods of molecular docking, molecular mechanics, and molecular dynamics, we identified three lead compounds (hesperidin, narirutin, and neohesperidin) suitable for multitarget SARS-CoV-2 inhibition. These compounds are flavanone glycosides found in citrus fruits – an active ingredient of Traditional Chinese Medicines. The developed pipeline can be further used to (1) model mutants for which crystal structures are not yet available and (2) scan a more extensive library of compounds against other mutated viral proteins.  相似文献   

14.
Due to the unprecedented and ongoing nature of the coronavirus outbreak, the development of rapid immunoassays to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its highly contagious variants is an important and challenging task. Here, we report the development of polyclonal antibody-functionalized spherical gold nanoparticle biosensors as well as the influence of the nanoparticle sizes on the immunoassay response to detect the SARS-CoV-2 spike protein by dynamic light scattering. By monitoring the increment in the hydrodynamic diameter (ΔDH) by dynamic light scattering measurements in the antigen–antibody interaction, SARS-CoV-2 S-protein can be detected in only 5 min. The larger the nanoparticles, the larger ΔDH in the presence of spike protein. From adsorption isotherm, the calculated binding constant (KD) was 83 nM and the estimated limit of detection was 13 ng/mL (30 pM). The biosensor was stable up to 90 days at 4 °C. Therefore, the biosensor developed in this work could be potentially applied as a fast and sensible immunoassay to detect SARS-CoV-2 infection in patient samples.  相似文献   

15.
The worldwide health emergency of the SARS-CoV-2 pandemic and the absence of a specific treatment for this new coronavirus have led to the use of computational strategies (drug repositioning) to search for treatments. The aim of this work is to identify FDA (Food and Drug Administration)-approved drugs with the potential for binding to the spike structural glycoprotein at the hinge site, receptor binding motif (RBM), and fusion peptide (FP) using molecular docking simulations. Drugs that bind to amino acids are crucial for conformational changes, receptor recognition, and fusion of the viral membrane with the cell membrane. The results revealed some drugs that bind to hinge site amino acids (varenicline, or steroids such as betamethasone while other drugs bind to crucial amino acids in the RBM (naldemedine, atovaquone, cefotetan) or FP (azilsartan, maraviroc, and difluprednate); saquinavir binds both the RBM and the FP. Therefore, these drugs could inhibit spike glycoprotein and prevent viral entry as possible anti-COVID-19 drugs. Several drugs are in clinical studies; by focusing on other pharmacological agents (candesartan, atovaquone, losartan, maviroc and ritonavir) in this work we propose an additional target: the spike glycoprotein. These results can impact the proposed use of treatments that inhibit the first steps of the virus replication cycle.  相似文献   

16.
The severe acute respiratory syndrome coronavirus 2, also known as SARS-CoV-2, is the causative agent of the COVID-19 global pandemic. SARS-CoV-2 has a highly conserved non-structural protein 12 (NSP-12) involved in RNA-dependent RNA polymerase (RdRp) activity. For the identification of potential inhibitors for NSP-12, computational approaches such as the identification of homologous proteins that have been previously targeted by FDA-approved antivirals can be employed. Herein, homologous proteins of NSP-12 were retrieved from Protein DataBank (PDB) and the evolutionary conserved sequence and structure similarity of the active site of the RdRp domain of NSP-12 was characterized. The identified homologous structures of NSP-12 belonged to four viral families: Coronaviridae, Flaviviridae, Picornaviridae, and Caliciviridae, and shared evolutionary conserved relationships. The multiple sequences and structural alignment of homologous structures showed highly conserved amino acid residues that were located at the active site of the RdRp domain of NSP-12. The conserved active site of the RdRp domain of NSP-12 was evaluated for binding affinity with the FDA-approved antivirals, i.e., Sofosbuvir and Dasabuvir in a molecular docking study. The molecular docking of Sofosbuvir and Dasabuvir with the active site that contains conserved motifs (motif A-G) of the RdRp domain of NSP-12 revealed significant binding affinity. Furthermore, MD simulation also inferred the potency of Sofosbuvir and Dasabuvir. In conclusion, targeting the active site of the RdRp domain of NSP-12 with Dasabuvir and Sofosbuvir might reduce viral replication and pathogenicity and could be further studied for the treatment of SARS-CoV-2.  相似文献   

17.
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mediated coronavirus disease 2019 (COVID-19) infection remains a global pandemic and health emergency with overwhelming social and economic impacts throughout the world. Therapeutics for COVID-19 are limited to only remdesivir; therefore, there is a need for combined, multidisciplinary efforts to develop new therapeutic molecules and explore the effectiveness of existing drugs against SARS-CoV-2. In the present study, we reported eight (SCOV-L-02, SCOV-L-09, SCOV-L-10, SCOV-L-11, SCOV-L-15, SCOV-L-18, SCOV-L-22, and SCOV-L-23) novel structurally related small-molecule derivatives of niclosamide (SCOV-L series) for their targeting potential against angiotensin-converting enzyme-2 (ACE2), type II transmembrane serine protease (TMPRSS2), and SARS-COV-2 nonstructural proteins (NSPs) including NSP5 (3CLpro), NSP3 (PLpro), and RdRp. Our correlation analysis suggested that ACE2 and TMPRSS2 modulate host immune response via regulation of immune-infiltrating cells at the site of tissue/organs entries. In addition, we identified some TMPRSS2 and ACE2 microRNAs target regulatory networks in SARS-CoV-2 infection and thus open up a new window for microRNAs-based therapy for the treatment of SARS-CoV-2 infection. Our in vitro study revealed that with the exception of SCOV-L-11 and SCOV-L-23 which were non-active, the SCOV-L series exhibited strict antiproliferative activities and non-cytotoxic effects against ACE2- and TMPRSS2-expressing cells. Our molecular docking for the analysis of receptor-ligand interactions revealed that SCOV-L series demonstrated high ligand binding efficacies (at higher levels than clinical drugs) against the ACE2, TMPRSS2, and SARS-COV-2 NSPs. SCOV-L-18, SCOV-L-15, and SCOV-L-09 were particularly found to exhibit strong binding affinities with three key SARS-CoV-2’s proteins: 3CLpro, PLpro, and RdRp. These compounds bind to the several catalytic residues of the proteins, and satisfied the criteria of drug-like candidates, having good adsorption, distribution, metabolism, excretion, and toxicity (ADMET) pharmacokinetic profile. Altogether, the present study suggests the therapeutic potential of SCOV-L series for preventing and managing SARs-COV-2 infection and are currently under detailed investigation in our lab.  相似文献   

18.
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged as a pandemic and has inflicted enormous damage on the lives of the people and economy of many countries worldwide. However, therapeutic agents against SARS-CoV-2 remain unclear. SARS-CoV-2 has a spike protein (S protein), and cleavage of the S protein is essential for viral entry. Nattokinase is produced by Bacillus subtilis var. natto and is beneficial to human health. In this study, we examined the effect of nattokinase on the S protein of SARS-CoV-2. When cell lysates transfected with S protein were incubated with nattokinase, the S protein was degraded in a dose- and time-dependent manner. Immunofluorescence analysis showed that S protein on the cell surface was degraded when nattokinase was added to the culture medium. Thus, our findings suggest that nattokinase exhibits potential for the inhibition of SARS-CoV-2 infection via S protein degradation.  相似文献   

19.
As the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), rages across the world, killing hundreds of thousands and infecting millions, researchers are racing against time to elucidate the viral genome. Some Bangladeshi institutes are also in this race, sequenced a few isolates of the virus collected from Bangladesh. Here, we present a genomic analysis of these isolates. The analysis revealed that SARS-CoV-2 isolates sequenced from Dhaka and Chittagong were the lineage of Europe and India, respectively. Our analysis identified a total of 42 mutations, including three large deletions, half of which were synonymous. Most of the missense mutations in Bangladeshi isolates found to have weak effects on the pathogenesis. Some mutations may lead the virus to be less pathogenic than the other countries. Molecular docking analysis to evaluate the effect of the mutations on the interaction between the viral spike proteins and the human ACE2 receptor, though no significant difference was observed. This study provides some preliminary insights into the origin of Bangladeshi SARS-CoV-2 isolates, mutation spectrum and its possible pathomechanism, which may give an essential clue for designing therapeutics and management of COVID-19 in Bangladesh.  相似文献   

20.
We elaborate new models for ACE and ACE2 receptors with an excellent prediction power compared to previous models. We propose promising workflows for working with huge compound collections, thereby enabling us to discover optimized protocols for virtual screening management. The efficacy of elaborated roadmaps is demonstrated through the cost-effective molecular docking of 1.4 billion compounds. Savings of up to 10-fold in CPU time are demonstrated. These developments allowed us to evaluate ACE2/ACE selectivity in silico, which is a crucial checkpoint for developing chemical probes for ACE2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号