首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding of the structure of turbulent flows at extreme Reynolds numbers (Re) is relevant because of several reasons: almost all turbulence theories are only valid in the high Re limit, and most turbulent flows of practical relevance are characterized by very high Re. Specific questions about wall-bounded turbulent flows at extreme Re concern the asymptotic laws of the mean velocity and turbulence statistics, their universality, the convergence of statistics towards their asymptotic profiles, and the overall physical flow organization. In extension of recent studies focusing on the mean flow at moderate and relatively high Re, the latter questions are addressed with respect to three canonical wall-bounded flows (channel flow, pipe flow, and the zero-pressure gradient turbulent boundary layer). Main results reported here are the asymptotic logarithmic law for the mean velocity and corresponding scale-separation laws for bulk flow properties, the Reynolds shear stress, the turbulence production and turbulent viscosity. A scaling analysis indicates that the establishment of a self-similar turbulence state is the condition for the development of a strict logarithmic velocity profile. The resulting overall physical flow structure at extreme Re is discussed.  相似文献   

2.
The unsteady turbulent channel flow subject to the temporal acceleration is considered in this study. Large-eddy simulations were performed to study the response of the turbulent flow to the temporal acceleration. The simulations were started with the fully developed turbulent channel flow at an initial Reynolds number of Re0 = 3500 (based on the channel half-height and the bulk-mean velocity), and then a constant temporal acceleration was applied. During the acceleration, the Reynolds number of the channel flow increased linearly from the initial Reynolds number to the final Reynolds number of Re1 = 22,600. The effect of grid resolution, domain size, time step size on the simulation results was assessed in a preliminary study using simulations of the accelerating turbulent flow as well as simulations of the steady turbulent channel flow at various Reynolds numbers. Simulation parameters were carefully chosen from the preliminary study to ascertain the accuracy of the simulation. From the accelerating turbulent flow simulations, the delays in the response of various flow properties to the temporal acceleration were measured. The distinctive features of the delays responsible for turbulence production, energy redistribution, and radial propagation were identified. Detailed turbulence statistics including the wall shear stress response during the acceleration were examined. The results reveal the changes in the near-wall structures during the acceleration. A self-sustaining mechanism of turbulence is proposed to explain the response of the turbulent flow to the temporal acceleration. Although the overall flow characteristics are similar between the channel and pipe flows, some differences were observed between the two flows.  相似文献   

3.
The two-level simulation (TLS) method evolves both the large-and the small-scale fields in a two-scale approach and has shown good predictive capabilities in both isotropic and wall-bounded high Reynolds number (Re) turbulent flows in the past. Sensitivity and ability of this modelling approach to predict fundamental features (such as backscatter, counter-gradient turbulent transport, small-scale vorticity, etc.) seen in high Re turbulent flows is assessed here by using two direct numerical simulation (DNS) datasets corresponding to a forced isotropic turbulence at Taylor’s microscale-based Reynolds number Reλ ≈ 433 and a fully developed turbulent flow in a periodic channel at friction Reynolds number Reτ ≈ 1000. It is shown that TLS captures the dynamics of local co-/counter-gradient transport and backscatter at the requisite scales of interest. These observations are further confirmed through a posteriori investigation of the flow in a periodic channel at Reτ = 2000. The results reveal that the TLS method can capture both the large- and the small-scale flow physics in a consistent manner, and at a reduced overall cost when compared to the estimated DNS or wall-resolved LES cost.  相似文献   

4.
We argue that turbulence in superfluids is governed by two dimensionless parameters. One of them is the intrinsic parameter q which characterizes the friction forces acting on a vortex moving with respect to the heat bath, with q?1 playing the same role as the Reynolds number Re=UR/ν in classical hydrodynamics. It marks the transition between the “laminar” and turbulent regimes of vortex dynamics. The developed turbulence described by Kolmogorov cascade occurs when Re?1 in classical hydrodynamics, and q?1 in superfluid hydrodynamics. Another parameter of superfluid turbulence is the superfluid Reynolds number Res=UR/κ, which contains the circulation quantum κ characterizing quantized vorticity in superfluids. This parameter may regulate the crossover or transition between two classes of superfluid turbulence: (i) the classical regime of Kolmogorov cascade where vortices are locally polarized and the quantization of vorticity is not important; (ii) the quantum Vinen turbulence whose properties are determined by the quantization of vorticity. A phase diagram of the dynamical vortex states is suggested.  相似文献   

5.
The connection between anomalous scaling of structure functions (intermittency) and numerical methods for turbulence simulations is discussed. It is argued that the computational work for direct numerical simulations (DNS) of fully developed turbulence increases as Re 4, and not as Re 3 expected from Kolmogorov’s theory, where Re is a large-scale Reynolds number. Various relations for the moments of acceleration and velocity derivatives are derived. An infinite set of exact constraints on dynamically consistent subgrid models for Large Eddy Simulations (LES) is derived from the Navier–Stokes equations, and some problems of principle associated with existing LES models are highlighted  相似文献   

6.
This paper reports the effect of inlet flow turbulence intensity on the combustion instability characteristics in a backward facing step combustor. The inlet turbulence intensity is varied by a turbulence generator. Unsteady pressure measurements and OH* chemiluminescence images are recorded over a wide range of operating conditions at different inlet turbulence intensities. The study shows an early onset of instability at low turbulence level, i.e., higher turbulence postpones the onset of instability to higher Reynolds number Re and/or higher equivalence ratio Φ. The early onset of instability in the Re and Φ parameter spaces is due to the change in system parameters such as flame speed and size of the recirculation zone downstream of the step at different turbulence levels. Further, the onset is characterized as subcritical bifurcation. At low Re, the hysteresis zone width is small for low turbulence levels and it is large at higher turbulence levels; and at higher Re, the hysteresis width remains constant at all turbulence levels. Investigation of instability characteristics reveals that there are momentary slippages from limit cycle orbit into brief silent regimes in an intermittent manner. The frequency of occurrence of the momentary silent regimes increases with reduction in turbulence, indicating that higher turbulence helps in maintaining the system in a stable limit cycle orbit. High-speed chemiluminescence imaging reveals the necessity of the vortex rollup in the recirculation zone to grow up to the top wall by dilatation from the heat release for the onset of instability. Considerations of the effect of turbulence on both the flame speed and the recirculation zone size together explain all the observed bifurcation trends. These results suggest that inlet flow turbulence should not just be considered as background noise. The turbulence effects on both the flame and flow should be considered in predicting the instability characteristics.  相似文献   

7.
《Journal of Electrostatics》2006,64(7-9):569-573
Experimental and theoretical investigations have been conducted for the on-set of electrohydrodynamically (EHD) induced turbulence for cylinder in cross flow. The experiments were conducted for Reynolds numbers from 0.2 to 80 based on cylinder diameters, and Reynolds numbers from 103 to 4×103 based on the flow channel width. This flow conditions represent laminar to transitional-flow before the on-set of the EHD-turbulent flow. Theoretical analysis was based on the mass, momentum, and charged particle conservation equations coupled with the Poisson's equation for electric field evaluation. The results showed that: (1) on-set of EHD turbulence is initiated near the real-stagnation point; (2) EHD turbulence can be generated even for Reynolds numbers (Re) less than 0.2, if the EHD number (Ehd) is larger than the critical Reynolds number square (Ehd>Re2); and (3) the electrical origin of instability, which is leading into the on-set of turbulence can be estimated from Ehd/Db2>Re2 relation, where Db is the Debye number.  相似文献   

8.
In this paper,the dynamic characteristics of building clusters are simulated by large eddy simulation at high Reynolds number for both homogeneous and heterogeneous building clusters.To save the computational cost a channel-like flow model is applied to the urban canopy with free slip condition at the upper boundary.The results show that the domain height is an important parameter for correct evaluation of the dynamic characteristics.The domain height must be greater than 8h(h is the average building height)in order to obtain correct roughness height while displacement height and roughness sublayer are less sensitive to the domain height.The Reynolds number effects on the dynamic characteristics and flow patterns are investigated.The turbulence intensity is stronger inside building cluster at high Reynolds number while turbulence intensity is almost unchanged with Reynolds number above the building cluster.Roughness height increases monotonously with Reynolds number by 20%from Re*=103 to Re*=105 but displacement height is almost unchanged.Within the canopy layer of heterogeneous building clusters,flow structures vary between buildings and turbulence is more active at high Reynolds number.  相似文献   

9.
Flow visualization results for secondary flow phenomena at the exit of 90° and 180° bends and helically coiled pipes (1, 2 and 5 turns), (radius of curvatureR c=381 mm, inside pipe diameterd=37.5 mm, curvature ratiod/2R c=0.049) and in the downstream straight pipe (l/d=30) are presented to study the stabilizing (relaminarization) effect in curved pipes with fully developed entry turbulent air flow and the destabilizing (re-transition from laminar to turbulent flow) effect in the downstream straight region. The entry Reynolds numbers areRe=2200, 3200, 4300 and 5300). The related measurement results using a hot-film anemometer are presented for developing profiles of the time-mean streamwise velocity distribution and the axial turbulence intensity field in the 180° return bend and in the downstream straight pipe for Reynolds numbersRe=3200, 4300, 6300 and 8200. The time traces showing the output of the hot-film sensor are also presented for developing fluctuating velocity field in the 180° bend and in the downstream straight pipe for the same Reynolds number range. Some aspects of the relaminarization phenomena in curved pipes and the re-transition phenomena from laminar to turbulent flow in the downstream straight pipe are clarified by the present experimental investigation.  相似文献   

10.
The turbulent asymptotic suction boundary layer is studied using a one-dimensional turbulence (ODT) model. ODT is a fully resolved, unsteady stochastic simulation technique. While flow properties reside on a one-dimensional domain, turbulent advection is represented using mapping events whose occurrences are governed by a random process. Due to its reduced spatial dimensionality, ODT achieves major cost reductions compared to three-dimensional (3D) simulations. A comparison to recent direct numerical simulation (DNS) data at moderate Reynolds number (Re = u / v0 = 333, where u and v0 are the free stream and suction velocity, respectively) suggests that the ODT model is capable of reproducing several velocity statistics, i.e. mean velocity and turbulent kinetic energy budgets, while peak turbulent stresses are under-estimated by ODT. Variation of the Reynolds number in the range Re ∈ [333,400,500,1000] shows that ODT can reproduce various trends observed as a result of increased suction in turbulent asymptotic suction boundary layers, i.e. the reduction of Reynolds stresses and enhanced skin friction. While up to Re = 500 our results can be directly compared to recent LES data, the simulation at Re = 1000 is currently not feasible through full 3D simulations, hence ODT may assist the design of future DNS or LES simulations at larger Reynolds numbers.  相似文献   

11.
The shear layer evolution and turbulent structure of near-wake behind a sphere atRe= 11,000 and 5,300 were investigated using a smoke-wire visualization method. A laminar flow separation was found to occur near the equator. The smooth laminar shear layers appeared to be axisymmetrically stable to the downstream location of aboutx/d=1.0 atRe=11,000 andx/d= 1.7∼1.8 atRe=5,300, respectively. At Re=11,000, the vortex ring-shaped protrusions were observed with the onset of shear layer instability. Moreover, the transition from laminar to turbulence in the separated flow region occurred earlier at the hiher Reynolds number ofRe=11,000 than atRe=5,300. The PIV measurements in the streamwise and cross-sectional planes atRe=11,000 clearly revealed the turbulent structures of the sphere wake such as recirculating flow, shear layer instability, vortex roll-up, and small-scale turbulent eddies.  相似文献   

12.
In this paper,we present a direct numerical simulation(DNS) of elastic turbulence of viscoelastic fluid at vanishingly low Reynolds number(Re = 1) in a three-dimensional straight channel flow for the first time,using the Giesekus constitutive model for the fluid.In order to generate and maintain the turbulent fluid motion in the straight channel,a sinusoidal force term is added to the momentum equation,and then the elastic turbulence is numerically realized with an initialized chaotic velocity field and a stretched conformation field.Statistical and structural characteristics of the elastic turbulence therein are analyzed based on the detailed information obtained from the DNS.The fluid mixing enhancement effect of elastic turbulence is also demonstrated for the potential applications of this phenomenon.  相似文献   

13.
14.
In this paper, hot-wire anemometry (HWA) is used to experimentally investigate interactions between a fully developed turbulent boundary layer and wake of an elliptic cylinder where axis ratio (AR) of the cylinder is 2. The elliptic cylinder was located inside and outside a turbulent boundary layer with a thickness (δ) of 0.38B. Furthermore, experiments were conducted at different Reynolds numbers (13,250 and 26,500) based upon the smallest cylinder diameter (B). Mean velocity, turbulence intensity and higher-order central moments of velocity signals (i.e. skewness and flatness) measurements were performed using HWA upon wake-boundary layer interactions on a flat plate. Results showed that profiles of stream-wise mean velocity and turbulence intensity were greatly dependent on gap ratio (G/B) and Reynolds number (Re) in near-wake region. It was also observed that, except for G/B = 0.1, the wake-boundary layer interactions were faster at Reynolds number of 26,500 rather than 13,250. The interactions occurred earlier upon fluctuating the velocity rather than the case where a fixed mean velocity was considered. The results further show that an increase in the gap ratio increases Strouhal number almost independent of δ/B. Behind the cylinder, relatively smaller wake region was obtained at Re = 26,500 rather than Re = 13,250, where the velocity profiles quickly converged to the flat plate boundary layer velocity profiles.  相似文献   

15.
The influence of Reynolds number and blockage ratio on the vortex dynamics of a trapezoidal bluff body placed inside a circular pipe is studied experimentally and numerically. Low aspect ratio, high blockage ratio, curved end conditions (junction of pipe and bluff body), axisymmetric upstream flow with shear and turbulence are some of the intrinsic features of this class of bluff body flows which have been scarcely addressed in the literature. A large range (200:200,000) of Reynolds number (ReD) is covered in this study, encompassing all the three pipe flow regimes (laminar, transition and turbulent). Four different flow regimes are defined based on the distinct features of Strouhal number (St)–ReD relation: steady, laminar irregular, transition and turbulent. The wake in the steady regime is stationary with no oscillations in the shear layer. The laminar regime is termed as irregular owing to irregular vortex shedding. The vortex shedding in this regime is observed to be symmetric. The emergence of separation bubble downstream of the bluff body on either side is another interesting feature of this regime, which is further observed to be symmetric. Two pairs of mean streamwise vortices are noticed in the near-wake regime, which are termed as reverse dipole-type wake topology. Beyond the irregular laminar regime, the Strouhal number falls gradually and vortex shedding becomes more periodic. This regime is named transition and occurs close to the Reynolds number at which transition to turbulence takes place in a fully developed pipe. The turbulent regime is characterised by a nearly constant Strouhal number. Typical Karman-type vortex shedding is noticed in this regime. The convection velocity, wake width formation length and irrecoverable pressure loss are quantified to highlight the influence of blockage ratio. These results will be useful to develop basic understanding of vortex dynamics of confined bluff body flow for several practical applications.  相似文献   

16.
We present an assessment and enhancement of the hybrid two-level large-eddy simulation method (A.G. Gungor and S. Menon, A new two-scale model for large eddy simulation of wall-bounded flows, Prog. Aerosp. Sci. 46 (2010), pp. 28–45), a multi-scale formulation for simulation of high Reynolds number wall-bounded turbulent flows. The assessment of the method is performed by examining role of static and dynamic blending functions used to perform hybridisation of two-level simulation (K. Kemenov and S. Menon, Explicit small-scale velocity simulation for high-Re turbulent flows, J. Comput. Phys. 220 (2006), pp. 290–311; K. Kemenov and S. Menon, Explicit small-scale velocity simulation for high-Re turbulent flows. Part 2: Non-homogeneous flows, J. Comput. Phys. 222 (2007), pp. 673–701) and large-eddy simulation methods. The sensitivity of first- and second-order turbulence statistics to the type of blending functions is investigated by simulating a fully developed turbulent flow in a channel at a friction Reynolds number Reτ = 395 and comparing the results with those obtained using a direct numerical simulation. The first-order statistics do not show any significant differences for different blending functions, but the second-order statistics show some minor differences. The dynamic evaluation of the hybrid region and the blending function is necessary for non-equilibrium and complex flows where use of a static blending function can lead to inaccurate results. We propose two criteria for the dynamic evaluation; first evaluates extent of the hybrid region based on the subgrid turbulent kinetic energy and the second estimates the blending function based on a characteristic length scale. The computational efficiency of the method is enhanced by incorporating a hybrid programming paradigm where a standard domain decomposition by the message-passing-interface library is combined with the open multi-processing based parallelisation. A further enhancement of the method is achieved by incorporating a closure model for the unclosed hybrid terms in the governing equations, which appear due to hybridisation of two-level- and large-eddy-simulation methods. The model is based on an order of magnitude approximation and a preliminary assessment of the model shows improvement of turbulence statistics when used to simulate turbulent flow in a periodic channel. The assessment and improvements to the multi-scale method make it more suitable for simulation of practical wall-bounded turbulent flows at higher Reynolds number than a conventional large-eddy simulation. This is demonstrated by simulating two representative cases; turbulent flow at high Reynolds number in a periodic channel and flow over a bump placed on the lower surface of a channel, where a relatively coarser computational grid is found to be sufficient for reasonably accurate results.  相似文献   

17.
Using high-resolution direct numerical simulations, the height and Reynolds number dependence of high-order statistics of the energy dissipation rate and local enstrophy are examined in incompressible, fully developed turbulent channel flow. The statistics are studied over a range of wall distances, spanning the viscous sublayer to the channel flow centerline, for friction Reynolds numbers Reτ=180 and Reτ=381. The high resolution of the simulations allows dissipation and enstrophy moments up to fourth order to be calculated. These moments show a dependence on wall distance, and Reynolds number effects are observed at the edge of the logarithmic layer. Conditional analyses based on locations of intense rotation are also carried out in order to determine the contribution of vortical structures to the dissipation and enstrophy moments. Our analysis shows that, for the simulation at the larger Reynolds number, small-scale fluctuations of both dissipation and enstrophy show relatively small variations for z+?100.  相似文献   

18.
A series of large-eddy simulations of a turbulent asymptotic suction boundary layer (TASBL) was performed in a periodic domain, on which uniform suction was applied over a flat plate. Three Reynolds numbers (defined as ratio of free-stream and suction velocity) of Re = 333, 400 and 500 and a variety of domain sizes were considered in temporal simulations in order to investigate the turbulence statistics, the importance of the computational domain size, the arising flow structures as well as temporal development length required to achieve the asymptotic state. The effect of these two important parameters was assessed in terms of their influence on integral quantities, mean velocity, Reynolds stresses, higher order statistics, amplitude modulation and spectral maps. While the near-wall region up to the buffer region appears to scale irrespective of Re and domain size, the parameters of the logarithmic law (i.e. von Kármán and additive coefficient) decrease with increasing Re, while the wake strength decreases with increasing spanwise domain size and vanishes entirely once the spanwise domain size exceeds approximately two boundary-layer thicknesses irrespective of Re. The wake strength also reduces with increasing simulation time. The asymptotic state of the TASBL is characterised by surprisingly large friction Reynolds numbers and inherits features of wall turbulence at numerically high Re. Compared to a turbulent boundary layer (TBL) or a channel flow without suction, the components of the Reynolds-stress tensor are overall reduced, but exhibit a logarithmic increase with decreasing suction rates, i.e. increasing Re. At the same time, the anisotropy is increased compared to canonical wall-bounded flows without suction. The reduced amplitudes in turbulence quantities are discussed in light of the amplitude modulation due to the weakened larger outer structures. The inner peak in the spectral maps is shifted to higher wavelength and the strength of the outer peak is much less than for TBLs. An additional spatial simulation was performed, in order to relate the simulation results to wind tunnel experiments, which – in accordance with the results from the temporal simulation – indicate that a truly TASBL is practically impossible to realise in a wind tunnel. Our unique data set agrees qualitatively with existing literature results for both numerical and experimental studies, and at the same time sheds light on the fact why the asymptotic state could not be established in a wind tunnel experiment, viz. because experimental studies resemble our simulation results from too small simulation boxes or insufficient development times.  相似文献   

19.
A number of experimental studies have inferred the existence of packets of inclined, hairpinlike vortices in wall turbulence on the basis of observations made in two-dimensional x−y planes using visualization and particle image velocimetry (PIV). However, there are very few observations of hairpins in existing three-dimensional studies made using direct numerical simulation (DNS), and no such study claims to have revealed packets. We demonstrate, for the first time, the existence of hairpin vortex packets in DNS of turbulent flow. The vortex packet structure found in the present study at low Reynolds number,Re t=300, is consistent with and substantiates the observations and the results from twodimensional PIV measurements at higher Reynolds numbers in channel, pipe and boundary layer flows. Thus, the evidence supports the view that vortex packets are a universal feature of wall turbulence, independent of effects due to boundary layer trips or critical conditions in the aforementioned numerical studies. Visualization of the DNS velocity field and vortices also shows the close association of hairpin packets with long low-momentum streaks and the regions of high Reynolds shear stress.  相似文献   

20.
The transition to turbulence in plane Poiseuille flow (PPF) is connected with the presence of exact coherent structures. We here discuss a variety of different structures that are relevant for the transition, compare the critical Reynolds numbers and optimal wavelengths for their appearance, and explore the differences between flows operating at constant mass flux or at constant pressure drop. The Reynolds numbers quoted here are based on the mean flow velocity and refer to constant mass flux. Reynolds numbers based on constant pressure drop are always higher. The Tollmien–Schlichting (TS) waves bifurcate subcritically from the laminar profile at Re = 5772 at wavelength 6.16 and reach down to Re = 2610 at a different optimal wave length of 4.65. Their streamwise localised counter part bifurcates at the even lower value Re = 2334. Three-dimensional exact solutions appear at much lower Reynolds numbers. We describe one exact solutions that has a critical Reynolds number of 316. Streamwise localised versions of this state require higher Reynolds numbers, with the lowest bifurcation occurring near Re = 1018. The analysis shows that the various branches of TS-waves cannot be connected with transition observed near Re ≈ 1000 and that the exact coherent structures related to downstream vortices come in at lower Reynolds numbers and prepare for the transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号