首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular docking and molecular dynamics simulation were applied to study the binding mode of 3',4'-di-O-(S)-camphanoyl-(+)-cis-khellactone (DCK) analogs anti-HIV inhibitors with HIV-1 RT. The results suggest that there is a strong hydrogen bond between DCK O16 and NH of Lys101, and that DCK analogues might act similarly as other types of HIV-1 RT inhibitors. The investigation about drug resistance for DCK shows no remarkable influence on the most frequently observed mutation K103N of HIV-1 RT. Based on the proposed mechanism, some new structures were designed and predicted by a SVM model. All compounds exhibited potent inhibitory activities against HIV replication in H9 lymphocytes with EC50 values lower than 1.95 microM. The rationality of the method was validated by experimental results.  相似文献   

2.

Background  

HIV-1 RT is a heterodimeric enzyme, comprising of the p66 and p51 subunits. Earlier, we have shown that the β7-β8 loop of p51 is a key structural element for RT dimerization (Pandey et al., Biochemistry 40: 9505, 2001). Deletion or alanine substitution of four amino acid residues of this loop in the p51 subunit severely impaired DNA binding and catalytic activities of the enzyme. To further examine the role of this loop in HIV-1 RT, we have increased its size such that the six amino acids loop sequences are repeated in tandem and examined its impact on the dimerization process and catalytic function of the enzyme.  相似文献   

3.
4.
Detailed chemical investigation of the South China sponge Dysidea arenaria resulted in the isolation of a new sesquiterpenoid hydroquinone, 19-hydroxypolyfibrospongol B (1), along with five known compounds: polyfibrospongol B (2), isosemnonorthoquinone (3), ilimaquinone (4), smenospongine (5) and smenotronic acid (6). The structures were determined by extensive spectroscopic analysis. The in vitro anti- HIV activity on HIV-1 RT was evaluated. Compounds 3 -6 displayed moderate inhibitory activity, with IC(50)values of 239.7, 16.4, 176.1, and 130.4 microM, respectively, while 1 and 2 were found to be inactive against the same biological target.  相似文献   

5.
6.
HIV-1 RT is an important target for the treatment of AIDS.There are two major classes of antiviral agents that inhibit HIV-1 RT have been identified,nucleoside RT inhibitors(NRTIs) and non-nucleoside RT inhibitors(NNRTIs).In this report,a noval class of non-nucleoside compound with potential RT inhibitory activity were found from the traditional Chinese medicines database (TCMD) using a combination of virtual screening,docking,molecular dynamic simulations,where results were ranked by scoring function of...  相似文献   

7.
Anti-HIV screening with the MT-4/MTT assay on a focused library of structurally diverse natural products has led to the discovery of a group of steroids with potent activities, which include four new ergostane-type steroids, named amotsterols A-D (1-4), together with two known analogs. Among them, the most potent amotsterol D (4) exhibited anti-HIV activity against wildtype and some clinically relevant multidrug resistant HIV-1 strains. Subsequent studies on its target identification through a proteomic approach found that compound 4 might target PKM2, a rate limiting enzyme of glycolysis, in host cells to restrict HIV replication. The docking model of compound 4 to PKM2 showed that the two hydroxyl groups of 4 form hydrogen bonds with the two parallel Y390 in each subunit of PKM2 separately, and the ring C of 4 is sandwiched between the two parallel aromatic rings of F26. The identified hit compound may have the potential to be further developed as a novel anti-HIV agent. These results demonstrated that an integrated approach, which combines new chemical structures and phenotypic screening with a proteomic approach, could not only identify novel HIV-1 inhibitors, but also elucidate the unknown targets of compound interactions in antiviral drug discovery.  相似文献   

8.
The anti-HIV-1 activity of mangiferin was evaluated. Mangiferin can inhibit HIV-1(Ⅲ)(B) induced syncytium formation at non-cytotoxic concentrations, with a 50% effective concentration (EC??) at 16.90 μM and a therapeutic index (TI) above 140. Mangiferin also showed good activities in other laboratory-derived strains, clinically isolated strains and resistant HIV-1 strains. Mechanism studies revealed that mangiferin might inhibit the HIV-1 protease, but is still effective against HIV peptidic protease inhibitor resistant strains. A combination of docking and pharmacophore methods clarified possible binding modes of mangiferin in the HIV-1 protease. The pharmacophore model of mangiferin consists of two hydrogen bond donors and two hydrogen bond acceptors. Compared to pharmacophore features found in commercially available drugs, three pharmacophoric elements matched well and one novel pharmacophore element was observed. Moreover, molecular docking analysis demonstrated that the pharmacophoric elements play important roles in binding HIV-1 protease. Mangiferin is a novel nonpeptidic protease inhibitor with an original structure that represents an effective drug development strategy for combating drug resistance.  相似文献   

9.
10.
The evolution of drug resistance is one of the most fundamental problems in medicine. In HIV/AIDS, the rapid emergence of drug-resistant HIV-1 variants is a major obstacle to current treatments. HIV-1 protease inhibitors are essential components of present antiretroviral therapies. However, with these protease inhibitors, resistance occurs through viral mutations that alter inhibitor binding, resulting in a loss of efficacy. This loss of potency has raised serious questions with regard to effective long-term antiretroviral therapy for HIV/AIDS. In this context, our research has focused on designing inhibitors that form extensive hydrogen-bonding interactions with the enzyme's backbone in the active site. In doing so, we limit the protease's ability to acquire drug resistance as the geometry of the catalytic site must be conserved to maintain functionality. In this Review, we examine the underlying principles of enzyme structure that support our backbone-binding concept as an effective means to combat drug resistance and highlight their application in our recent work on antiviral HIV-1 protease inhibitors.  相似文献   

11.
The virtual screening approach for docking small molecules into a known protein structure is a powerful tool for drug design. In this work, a combined docking and neural network approach, using a self-organizing map, has been developed and applied to screen anti-HIV-1 inhibitors for two targets, HIV-1 RT and HIV-1 PR, from active compounds available in the Thai Medicinal Plants Database. Based on nevirapine and calanolide A as reference structures in the HIV-1 RT binding site and XK-263 in the HIV-1 PR binding site, 2,684 compounds in the database were docked into the target enzymes. Self-organizing maps were then generated with respect to three types of pharmacophoric groups. The map of the reference structures were then superimposed on the feature maps of all screened compounds. Only the structures having similar features to the reference compounds were accepted. By using the SOMs, the number of candidates for HIV-1 RT was reduced to six and nine compounds consistent with nevirapine and calanolide A, respectively, as references. For the HIV-1 PR target, there are 135 screened compounds showed good agreement with the XK-263 feature map. These screened compounds will be further tested for their HIV-1 inhibitory affinities. The obtained results indicate that this combined method is clearly helpful to perform the successive screening and to reduce the analyzing step from AutoDock and scoring procedure.  相似文献   

12.
13.
14.
15.
16.
A single all-hydrocarbon staple introduction in SC34EK can afford a potent HIV inhibitor with high protease resistance for ADIS treatment.  相似文献   

17.
HIV-1通过其包膜糖蛋白跨膜亚基gp41介导的病毒-细胞膜融合进入和感染靶细胞.HIV-1融合抑制剂以gp41为靶点,通过阻断病毒与宿主细胞膜的融合,在感染的初始环节切断HIV-1的复制周期.2003年,首个多肽类融合抑制剂T-20获美国食品药物管理局(FDA)批准上市,但其易被体内蛋白酶降解、临床剂量大、耐受性差,且耐药性HIV-1毒株也很快出现.针对这些缺点,近年来在融合抑制剂的作用机制研究和新融合抑制剂的研发等方面取得了重要进展.以gp41不同功能区为靶点,具有高活性和更好代谢性质的多肽及多肽类似物候选分子不断被发现,成为抗HIV药物研究领域的热点之一.本文综述了多肽和类肽类融合抑制剂的研究进展,为相关的药物开发和基础研究提供参考.  相似文献   

18.
19.
20.
Two targeted sets of novel 1,5-diaryl-1H-imidazole-4-carboxylic acids 10 and carbohydrazides 11 were designed and synthesized from their corresponding ester intermediates 17, which were prepared via cycloaddition of ethyl isocyanoacetate 16 and diarylimidoyl chlorides 15. Evaluation of these new target scaffolds in the AlphaScreenTM HIV-1 IN-LEDGF/p75 inhibition assay identified seventeen compounds exceeding the pre-defined 50% inhibitory threshold at 100 µM concentration. Further evaluation of these compounds in the HIV-1 IN strand transfer assay at 100 μM showed that none of the compounds (with the exception of 10a, 10l, and 11k, with marginal inhibitory percentages) were actively bound to the active site, indicating that they are selectively binding to the LEDGF/p75-binding pocket. In a cell-based HIV-1 antiviral assay, compounds 11a, 11b, 11g, and 11h exhibited moderate antiviral percentage inhibition of 33–45% with cytotoxicity (CC50) values of >200 µM, 158.4 µM, >200 µM, and 50.4 µM, respectively. The antiviral inhibitory activity displayed by 11h was attributed to its toxicity. Upon further validation of their ability to induce multimerization in a Western blot gel assay, compounds 11a, 11b, and 11h appeared to increase higher-order forms of IN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号