首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three discrete carbohydrate-appended 2,2'-dipicolylamine ligands were complexed to the {M(CO)(3)}(+) (M = (99m)Tc/Re) core: 2-(bis(2-pyridinylmethyl)amino)ethyl-beta-d-glucopyranoside (L(1)()), 2-(bis(2-pyridinylmethyl)amino)ethyl-beta-D-xylopyranoside (L(2)()), and 2-(bis(2-pyridinylmethyl)amino)ethyl-alpha-d-mannopyranoside (L(3)). An ethylene spacer is used to separate the carbohydrate moiety and the dipicolylamine (DPA) function in all three ligands. The Re complexes [Re(L(1-3))(CO)(3)]Br were characterized by (1)H and (13)C 1D/2D NMR spectroscopies, which confirmed the pendant nature of the carbohydrate moieties in solution. NMR measurements also established the long-range asymmetric effect of the carbohydrate functions on the chelating portion of the ligand. One analogue, [Re(L(1))(CO)(3)]Cl, was characterized in the solid state by X-ray crystallography. Further characterization was provided by IR spectroscopy, elemental analysis, conductivity, and mass spectrometry. Radiolabeling of L(1)-L(3) with [(99m)Tc(H(2)O)(3)(CO)(3)](+) afforded high yield compounds of identical character to the Re analogues. The radiolabeled compounds were found to be stable toward ligand exchange in the presence of a large excess of either cysteine or histidine over a 24-h period.  相似文献   

2.
3.
The cornucopia of novel porhyrinoid macrocycles that - as a result of a symbiotic link between annulene and porphyrin chemistry - has emerged from the Cologne laboratory over the last decade is reviewed.  相似文献   

4.
This article reviews recent work in the area of organomanganese chemistry designing organometallic based molecular wires for potential applications in molecular electronics utilising the bottom-up approach. The field of molecular electronics has recently received much attention in the pursuit of continued miniaturization of electronics. Molecular wires that can allow a through-bridge exchange of an electron/electron hole between its remote ends/terminal groups are the basic motifs of single electron devices. Our recent work in this field has been the design and development of transition-metal complexes with a special emphasis on the half sandwich dinuclear manganese complexes and the bis dmpe dinuclear Mn(II)/Mn(II). In this review, we would like to highlight the importance of the nature of the transition metal and their significant effect on the redox process, which is of paramount importance for the design of systems that could be ultimately wired into circuits for various applications.  相似文献   

5.
The field of molecular machines, i.e. multicomponent systems able to undergo large amplitude motions under the action of an external signal, has experienced a spectacular development since the beginning of the 1990s. Transition metal complexes have played an important role in this context, often as components of catenanes and rotaxanes. The present tutorial review will discuss a few systems of this type, taken from the contributions of our group or from others. The stimulus responsible for the controlled motion of the machine can be chemical, electrochemical, or photochemical. Examples of these three categories will be considered.  相似文献   

6.
7.
8.
The recent discovery that certain metal complexes can bind hydrogen in molecular form as they do other small molecules has presented a unique opportunity for neutron scattering to assist in the determination of electronic details of the novel chemical bond formed between this dihydrogen ligand and the metal. This can be accomplished by comparative studies of the barriers to rotation for the dihydrogen ligand in various complexes where either the metal center or the other metal ligands are changed together with appropriate theoretical analyses. This information can be extracted from vibrational and rotational inelastic neutron scattering spectra. Results from a wide variety of molecular hydrogen complexes are reviewed and their implications for the metal—dihydrogen chemical bond are discussed along with reference to various theortical approaches to this problem.  相似文献   

9.
The synthetic strategy initiated by Busch and further developed in recent years resulted in an impressive variety of new azamacrocyclic ligand superstructures. In this contribution, we have reviewed papers containing general synthetic strategies, structural and electronic properties and results of electrochemical studies for a long series of neutral and charged macrocyclic tetraimine complexes of transition metals leading to a new type of homo- and heteronuclear[2]catenanes as examples of switchable molecular machines. The whole series consists of neutral and charged mono-, bis- and trismacrocycles and appropriate reference neutral molecules and many of their derivatives. The bismacrocyclic moieties are constructed from simpler tetraazamacrocyclic fragments. When two of them are linked through polymethylene chains, they form face-to-face biscyclidenes—rectangular box-like moieties. They can host some small guest molecules (water, π-electron-donating compounds) and are stabilized by hydrogen bonds with solvent molecules or a shell of neighboring counterions. Neutral thiol derivatives are used as recognition sites of monolayers self-assembled on electrode surfaces to be employed in devices based on donor–acceptor interactions.Our catenanes consist of bismacrocyclic transition metal complexes linked by aliphatic chains and interlocked with a substituted crown ether. We have proved that under external stimuli – electrochemical pulses – the heteronuclear catenane exhibits controlled intramolecular relocation of the crown ether between two positions. The relocation is possible due to π?π interactions between the aromatic fragments of the crown ether and the transition metal (Ni, Cu) coordinating macrocyclic rings.Our model tetraimine complexes of transition metals can also be used to solve the problem of controlling directional relative movement of molecular fragments present in complex supramolecules. On the way to this aim we have synthesized trismacrocyclic derivatives which are now appropriately modified to serve as components of complex catenanes.  相似文献   

10.
Emissive f-block coordination complexes constitute an important class of optical probes, with applications ranging from sensing of bioactive species, high throughput assays and screening protocols in vitro, to time-resolved imaging studies in cellulo or in vivo. The key chemistry issues to be addressed in complex design and characterisation are defined, with an emphasis on the use of emissive europium and terbium complexes and their conjugates in molecular imaging. Both luminescent 'tags' useful in energy transfer studies and 'responsive' systems for sensing are discussed.  相似文献   

11.
12.
A new class of paramagnetic macromolecular magnetic resonance imaging contrast agents has been developed. Eight new polyamide ligands were synthesized by copolymerization of ethylenediaminetetraacetic acid dianhydride or diethylenetriaminepentaacetic acid dianhydride and diamine monomers. Their gadolinium(III), manganese(II) and iron(III) complexes were also synthesized. All polyamide ligands and metal complexes were characterized by 1H nuclear magnetic resonance, infrared spectra and elemental analyses. Relaxivity studies showed that the polyamide paramagnetic metal complexes had obviously higher relaxation effectiveness as compared to corresponding simple monomeric paramagnetic metal complexes.  相似文献   

13.
Molecular nitrogen is intrinsically unreactive, so much so that it has confounded chemists for decades in attempts to functionalize this abundant diatomic molecule. While biological systems and industrial processes can fix nitrogen to form ammonia, the challenge is to discover a process that involves a homogeneous catalyst that can utilize N(2) as a feedstock to generate higher value organonitrogen materials. In this review, the activation of molecular nitrogen by transition metal complexes is reviewed with the view to present new kinds of transformations for coordinated dinitrogen. Moreover, some reaction types that are as yet unknown are outlined to try and stimulate further research in this area.  相似文献   

14.
The frontiers of novel photoresponsive materials constructed with photochromes and transition metal complexes are surveyed in this review. Strategies to develop new photofunctions are categorized into four types. In the first category, intramolecular electronic interactions between photochromes and metal complexes produce entangled responses such as redox-regulated photochromic reactions or tristable photochromism. In the second, light-induced molecular structural rearrangements of photochromes induce the transformation of flexible and labile coordination structures, which can be applied to complex photomechanics or photoelectron conversion. In the third, the photochromic moiety also acts as a photonic switch, transmitting a metal-metal interaction when it is located between two metal complex moieties. The last category concerns the development of new photochromic reactions, involving metal-ligand bond rearrangements. These reactions potentially induce drastic electronic tuning of the metal center, and can be used to develop light-driven molecular machines.  相似文献   

15.
A new heterocycle, namely 2-(furyl)-3-(furfuralimino)-1,2-dihydroquinazolin-4(3H)-one (ffdq) was formed by the condensation of 2-aminobenzoylhydrazide with furfural and characterized by physico-chemical, spectroscopic, and single crystal X-ray diffraction studies. A series of complexes of ffdq have been synthesized and characterized by physico-chemical, spectroscopic, and thermal studies. According to the i.r. and 1H-n.m.r. spectra ffdq behaves as a bidentate ligand coordinating through quinazoline oxygen and azomethine nitrogen. The FAB-mass spectrum of the Cd(II) complex indicates the monomeric nature of this complex. The X-band e.p.r. spectrum of the Cu(II) complex and thermal stabilities of the Co(II) and Ni(II) complexes are discussed.  相似文献   

16.
17.
For purposes of interpreting broad band electronic spectra of complexes, the 3N-5 dimensional potential energy hypersurface may be reduced substantially. Consideration of the geometry of the orbital transition involved allows selection of an appropriate cross section, depending on which features should be represented. In addition, the orbital transition geometry predicts which vibrational modes will contribute significantly to the width of the spectrum. In the particular case of the first and second spin-allowed bands in d3 and d6 complexes, α1g and ?g modes are responsible for the band width.  相似文献   

18.
19.
Abstract

The surface coordination chemistry of Pd complexes on alumina has been studied in the framework of synthesizing Pd/γ-Al2O3 catalytic materials. Two methodologies were explored: the direct grafting of Pd complexes on hydroxyl functions present at the alumina surface and the anchoring of the precursors via amine-bearing silanes previously grafted on the support. Suitable conditions to graft and anchor Pd complexes on alumina surface were found and experimental proofs of grafting and anchoring processes are provided. The results show that covalent grafting indeed took place for samples prepared in acetonitrile with [Pd(CF3CO2)2(bipy)] and [PdCl2(PhCN)2] complexes or with [Pd(OAc)2] and [Pd(CF3CO2)2] in acetone. The anchoring was successful for catalysts prepared in acetone with 1 wt.% of [Pd(CF3CO2)2] loading. Grafting and anchoring were found to stabilize palladium in its Pd(II) oxidation state. This has an adverse effect on the activation step that should lead to reduction of the complex to give the metallic catalytic supported active phase.  相似文献   

20.
A novel Schiff base, 3-(((1H-1,2,4-triazol-3-yl)imino)methyl)-4H-chromen-4-one (L) was synthesized and used as ligand for the synthesis of Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes. The structural characterization of the ligand and its metal complexes was determined by using various physicochemical and spectroscopic methods. The IR data show that the Schiff base ligand acts as a bidentate donor coordinating through the oxygen atom of the chromone and nitrogen atom of the imine group. Based on all spectral data, tetrahedral geometry has been proposed for all the metal complexes except Cu(II) and Pd(II) complexes. However, square-planar geometry has been proposed for Cu(II) and Pd(II) complexes. DNA binding interaction of the ligand and its metal complexes was investigated by using UV–visible absorption, fluorescence and molecular docking studies. The binding constants were in the order of 104 M?1 suggesting good binding affinity towards CT-DNA. The DNA cleavage activity of the synthesized compounds was investigated by using agarose gel electrophoresis. In vitro antimicrobial activity of the synthesized compounds were screened against two gram-positive bacteria (Bacillus subtilis, Staphylococcus aureu) and two gram-negative bacteria (Escherichia coli, Proteus vulgaris) and one fungi strain Candida albicans using disc diffusion method. Antioxidant activity was carried out by DPPH radical scavenging method. In vitro anti-proliferative activity of the ligand and its metal complexes was also carried on the HEK-293, HeLa, IMR-32 and MCF-7 cancer cell lines using MTT assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号