首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Surface texturing (for example, producing micro dimples on the surface) of mechanical parts has a great potential to improve the surface tribological properties. Surface texturing through nanosecond laser ablation has many associated advantages and hence has drawn lots of attentions. However, the produced micro dimple bottom (if through laser spot scanning) is often very rough, which may harm the surface tribological properties. In this paper, a two-step laser surface texturing process is proposed and studied, where a relatively high-fluence laser ablation step (which is to create dimples) is followed by a low-fluence laser-induced melting, melted material flow and re-solidification step (which is to smooth the ablated dimple bottom surface). The study shows that the two-step laser surface texturing process can produce dimples with very smooth bottom surfaces. The effects of laser pulse duration and scan speed in Step 2 on the dimple bottom surface morphology and roughness have also been investigated, and some very interesting physical phenomena have been found, which have been rarely reported before in literature. Some hypothesized explanations are given for the observed effects, which require future work to completely understand their underlying mechanisms.  相似文献   

2.
Laser joining parameters play a very significant role in determining the quality of laser transmission joining between PET films and 316L stainless steel plates. In the present work, Laser power, joining speed and stand-off-distance were considered as joining parameters. The parameters that influence the quality of laser transmission joining were optimized using response methodology for achieving good joint strength and minimal joint width. The central composite second-order Rotational Design (CCRD) has been utilized to plan the experiments and response surface methodology (RSM) is employed to develop mathematical relationships between joining parameters and desired responses. Based on the developed mathematical models, the interaction effects of the process parameters on laser transmission joining were investigated and optimum joining parameters were achieved. The experimental values nearly agree with the predicted values from mathematical models, indicates that the models can predict the responses adequately and optimize the key process parameters quickly.  相似文献   

3.
Mechanical texturing is the dominant technique for texturing magnetic media and is widely used in current hard disk drive manufacturing processes. This technique possesses the advantages of easy operation and low cost. However, it has an inherent disadvantage since mechanical texturing leads to jagged profiles randomly generated on hard disk surfaces, which precludes its further use in low-fly-height cases. A laser-assisted process working at near-threshold fluences for mechanical texturing was proposed to buff the irregular profiles of mechanical textures formed on Ni-P disk surfaces using a KrF excimer laser (λ=248 nm,τ=23 ns). This process, based on selective melting of the Ni-P surfaces due to inhomogeneous deposition of laser energy, was found to be capable of improving the surface characteristics of mechanically textured Ni-P disks. VSM and XRD analyses demonstrated that magnetic and structural properties of the Ni-P surfaces would not be affected in a detrimental way so as to influence the recording features of the magnetic media after laser buffing. Received: 28 November 2000 / Accepted: 12 December 2000 / Published online: 3 April 2001  相似文献   

4.
Laser bonding parameters play a very significant role in determining the quality of laser transmission bonding between PET films and titanium films coated glass sheets. In order to achieve good bond strength and minimal bond width, three key process parameters affecting the bond quality of transmission laser bonding, namely, laser power, bond speed and film thickness were optimized by response surface methodology in this paper. Response surface methodology (RSM) was used to develop mathematical models between the key process parameters and the desired responses and the central composite design (CCD) was utilized to conduct experimental planning. The samples were tested using an electromechanical universal micro-tester in order to determine bond strength. The morphology of the bonded area was observed with an optical microscope. The interaction effect of main process parameters on bond quality was researched. Design Expert analysis indicated that the best laser power, bond speed and film thickness on bond quality were 11.2 W, 4 mm/s and 163 nm, respectively. Finally, the experimental results are consistent with the predicted, which illustrates that the developed mathematical models can predict the responses adequately.  相似文献   

5.
In this paper, simultaneous laser transmission welding process is systematically investigated via process modeling, using an FEM and RSM combined approach. The objective of the present research is to study the effects of process parameters on the temperature field and weld bead dimensions. The thermal field is simulated by solving a three dimensional transient heat diffusion equation with temperature dependent material properties using the ANSYS® multi-physics. Response surface methodology is then applied for developing mathematical models based on simulation results. The second order equations developed by RSM can predict the values of the responses with significant accuracy. The effect of parameters and their interactions on the responses are studied using the developed response surface models. The mathematical models are further used in search of the optimal process window for obtaining an acceptable weld. The graphical optimization results into a couple of overlay contours plots, which allow quick visual inspection of the area of feasible response values in the factor space to choose the favorable welding parameter combination.  相似文献   

6.
Surface potential decay (SPD) measurements have been considered as the most appropriate technique for the investigation of the corona charging of dielectrics. The aim of the present paper is to point out the interactions between three factors namely: grid potential, grid current and sample size (length), by taking advantage of the experimental design methodology. The experiments were performed on 0.08 mm – thick samples of PP films, in ambient air (temperature: 20 °C–22 °C; relative humidity: 56 %–62 %), The domains of variation of the three factors considered in the experiments were as follows: – 8 to – 12 kV, for grid potential – 50 to – 90 μA for grid current and 70–150 mm, for sample length. The relative SPD after 300 s and 900 s were considered as output variables of the process. The models that express these variables as quadratic polynomial functions of the three factors were obtained using the Design of Experiments methodology and the commercial software MODDE 5.0. They point out that the surface potential decay is faster at higher applied voltages, lower grid currents and smaller sample areas. The grid voltage has a stronger effect at lower values of the grid current. Both the grid voltage and the corona current have a stronger effect of the SPD in the case of the samples of smaller areas. These observations suggest the optimal operating conditions of the corona charging devices for this kind of dielectric materials.  相似文献   

7.
The CO2 laser cutting of three polymeric materials namely polypropylene (PP), polycarbonate (PC) and polymethyl methacrylate (PMMA) is investigated with the aim of evaluating the effect of the main input laser cutting parameters (laser power, cutting speed and compressed air pressure) on laser cutting quality of the different polymers and developing model equations relating input process parameters with the output. The output quality characteristics examined were heat affected zone (HAZ), surface roughness and dimensional accuracy. Twelve sets of tests were carried out for each of the polymer based on the central composite design. Predictive models have been developed by response surface methodology (RSM). First-order response models for HAZ and surface roughness were presented and their adequacy was tested by analysis of variance (ANOVA). It was found that the response is well modeled by a linear function of the input parameters. Response surface contours of HAZ and surface roughness were generated. Mathematical model equations have been presented that estimate HAZ and surface roughness for various input laser cutting parameters. Dimensional accuracies of laser cutting on polymers were examined by dimensional deviation of the actual value from the nominal value. From the analysis, it has been observed that PMMA has less HAZ, followed by PC and PP. For surface roughness, PMMA has better cut edge surface quality than PP and PC. The response models developed can be used for practical purposes by the manufacturing industry. However, all three polymeric materials showed similar diameter errors tendency in spite of different material properties.  相似文献   

8.
Surface texturing of the metals, including steels, gained a new dimension with the appearance of femtosecond lasers. These laser systems enable highly precise modifications, which are very important for numerous applications of metals. The effects of a Ti:sapphire femtosecond laser with the pulse duration of 160 fs, operating at 775 nm wavelength and in two operational regimes - single pulse (SP) and scanning regime, on a high quality AISI 1045 carbon steel were studied. The estimated surface damage threshold was 0.22 J/cm2 (SP). Surface modification was studied for the laser fluences of 0.66, 1.48 and 2.37 J/cm2. The fluence of 0.66 J/cm2, in both working regimes, induced texturing of the material, i.e. formation of periodic surface structures (PSS). Their periodicity was in accordance with the used laser wavelength. Finally, changes in the surface oxygen content caused by ultrashort laser pulses were recorded.  相似文献   

9.
Laser texturing is a novel technique that may be used to texture a cold roller in the process of manufacturing high quality steel sheets. With the aim of improving the quality of the textured roller by using a CO2 laser, a new laser beam modulating device is proposed. An optical beam expander with a fast rotating chopper system is designed. The laser pulse is split into two parts by the chopper blades; one is the preheating pulse that is reflected onto optical loop mirrors; the other is the directly transmitted pulse that creates the craters at the preheated spots. The preheating beam focus spot size and position can be adjusted. The focusing characteristics and optical parameter compensation for the flying optics are investigated. The heat transfer and melt process of laser texturing are numerically simulated. The effects of the double pulses on the texturing are analyzed. The effect of preheating the sample ahead of the laser texturing pulse is examined. The surface profile and bump hardness show improvements by using this approach.  相似文献   

10.
This paper details an investigation into the laser processing of medium-density fibreboard (MDF). Part 1 reports on the determination of process parameter settings for the effective cutting of MDF by CO2 laser, using an established experimental methodology developed to study the interrelationship between and effects of varying laser set-up parameters. Results are presented for both continuous wave (CW) and pulse mode (PM) cutting, and the associated cut quality effects have been commented on.  相似文献   

11.
Laser surface micro/nanopatterning by particle lens arrays is a well-known technique. Enhanced optical fields can be achieved on a substrate when a laser beam passes through a self-assembled monolayer of silica microspheres placed on the substrate. This enhanced optical field is responsible for ablative material removal from the substrate resulting in a patterned surface. Because of the laser ablation, the microspheres are often ejected from the substrate during laser irradiation. This is a major issue impeding this technique to be used for large area texturing. We explored the possibility to retain the spheres on the substrate surface during laser irradiation. A picosecond laser system (wavelength of 515 nm, pulse duration 6.7 ps, repetition rate 400 kHz) was employed to write patterns through the lens array on a silicon substrate. In this experimental study, the pulse energy was found to be a key factor to realize surface patterning and retain the spheres during the process. When the laser pulse energy is set within the process window, the microspheres stay on the substrate during and after laser irradiation. Periodic patterns of nanoholes can be textured on the substrate surface. The spacing between the nanoholes is determined by the diameter of the microspheres. The depth of the nanoholes varies, depending on the number of laser pulses applied and pulse energy. Large area texturing can be made using overlapping pulses obtained through laser beam scanning.  相似文献   

12.
Laser–ablation techniques have been widely applied for removing material from a solid surface using a laser–beam irradiating apparatus. This paper presents a surface–texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser–scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser–textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9° on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light.  相似文献   

13.
Hydrogenated amorphous silicon (a-Si:H) thin films have been considered for use in solar cell applications because of their significantly reduced cost compared to crystalline bulk silicon. However, their overall efficiency and stability are lower than that of their bulk crystalline counterpart. Limited work has been performed on simultaneously solving the efficiency and stability issues of a-Si:H. Previous work has shown that surface texturing and crystallization on a-Si:H thin film can be achieved through a single-step laser processing, which can potentially alleviate the disadvantages of a-Si:H in solar cell applications. In this study, hydrogenated and dehydrogenated amorphous silicon thin films deposited on glass substrates were irradiated by KrF excimer laser pulses and the effect of hydrogen on surface morphologies and microstructures is discussed. Sharp spikes are focused only on hydrogenated films, and the large-grained and fine-grained regions caused by two crystallization processes are also induced by presence of hydrogen. Enhanced light absorptance is observed due to light trapping based on surface geometry changes of a-Si:H films, while the formation of a mixture of nanocrystalline silicon and original amorphous silicon after crystallization suggests that the overall material stability can potentially improve. The relationship between crystallinity, fluence and number of pulses is also investigated. Furthermore, a step-by-step crystallization process is introduced to prevent the hydrogen from diffusing out in order to reduce the defect density, and the relationship between residue hydrogen concentration, fluence and step width is discussed. Finally, the combined effects show that the single-step process of surface texturing and step-by-step crystallization induced by excimer laser processing are promising for a-Si:H thin-film solar cell applications.  相似文献   

14.
A beam-modulating system based on the rotating polygon has been proposed in a previous experimental work [14]. The aim was to improve the quality and efficiency of CO2 laser surface texturing. Based on the generalized ABCD law, the focusing characteristics of a real beam through the modulating system are investigated in this paper. By introducing a precise defocusing, the velocity synchronization between the focal spot and the workpiece can be realized. Micro-dimples of nearly circular shape can be achieved on the surface. Surface texturing of mill roll has been performed. The experimental and theoretical results are in good agreement.  相似文献   

15.
In the present work, a study is made to investigate the effects of process parameters, namely, laser power, welding speed, size of the laser beam and clamp pressure, on the lap-shear strength and weld-seam width for laser transmission welding of acrylic (polymethyl methacrylate), using a diode laser system. Response surface methodology (RSM) is employed to develop mathematical relationships between the welding process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired weld quality. In addition, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Design-Expert v7 is used to establish the design matrix and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA) method to check their adequacy. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses adequately within the limits of welding parameters being used.  相似文献   

16.
The application of lasers for processing diamond has revolutionized the diamond industry and its applications in microelectronics, microelectromechanical system (MEMS) and microoptoelectromechanical system (MOEMS) technologies. The process quality can be evaluated using spectroscopic techniques. In the present investigation, four different types of Q‐switched solid‐state lasers (with different beam parameters), namely, a lamp‐pumped Nd:YAG laser operating at 1064 nm, a lamp‐pumped Nd:YAG laser operating at second harmonically generated 532 nm, a diode‐pumped Nd:YVO4 laser operating at 1064 nm and a diode‐pumped Nd:YAG laser operating at 1064 nm, have been employed for the processing of a single‐crystal, gem‐quality, natural diamond. The main objective behind the selection of these lasers with different beam parameters was to study the effect of wavelength, pulse width, pulse energy, peak power and beam quality factor (M2 factor) on various aspects of processing (such as microcracking, material loss and cut surface quality) and their relative merits and demerits. The overall weight loss of the diamond and formation of microcracks during processing have been studied for the above four cases. The characteristics of the graphite formed during processing, elemental analysis, surface morphology of the cut surface and process dynamics have been studied using micro‐Raman spectroscopy and scanning electron microscopy (SEM). We observed that laser cutting of single‐crystal diamonds used for industrial applications can be accomplished without microcracking or surface distortion using Q‐switched Nd:YAG lasers. This allows direct processing without extensive postgrinding and polishing stages. Very efficient diamond processing is possible using diode‐pumped lasers, which results in the lowest possible breakage rate, good accuracy, good surface finish and low weight loss. From the micro‐Raman and SEM studies, it is concluded that the surface quality obtained is superior when diode‐pumped Nd:YVO4 laser is used, owing to its extremely high peak power. The maximum graphite content is observed while processing with lamp‐pumped Nd:YAG laser at 532 nm. An overall comparison of all the laser sources leads to the conclusion that diode‐pumped Nd:YAG laser is a superior option for the efficient processing of natural diamond crystals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The three-level rate-equations-based QCL models can possess multiple DC solution regimes for nonnegative values of injection currents. We show that using the proposed variable transformation, the three-level rate-equations based models, considering the gain-saturation terms, can possess single solution regime and hence, the circuit-level simulation results will always converge to the positive laser output powers. By using the proposed equivalent circuit-level model, the effects of injection current on QCL static and dynamic behaviors are investigated. It has been shown that the proposed circuit-level model accurately predicts the operating characteristics of the QCLs.  相似文献   

18.
为了提高5052铝合金的粘接性能,利用脉冲光纤激光的短脉冲和高峰值功率的特性,对铝合金试件进行了激光毛化试验研究。通过正交实验法,研究了平均功率、扫描速度、脉冲频率和脉冲宽度等工艺参数对激光毛化质量的影响,以及各工艺参数的影响权重,并求得最佳工艺参数,最佳工艺参数为平均功率90 W、扫描速度10 mm/s、脉冲频率1000 kHz、脉冲宽度200 ns。根据优化后的工艺参数,加工获得了粗糙度2.35 μm,然后对激光毛化后的铝合金试件进行单搭接拉伸试验,研究发现粘接强度随着粗糙度的增大而增大,当粗糙度到达一定程度时,粘接强度反而会随着粗糙度的增大而减小。另外,粘接强度还跟铝合金表面的微织构的类型及疏密程度都有很大关系。  相似文献   

19.
Systematic error correction of a 3D laser scanning measurement device   总被引:1,自引:0,他引:1  
Non-contact measurement techniques using laser scanning have the advantage of fast acquiring large numbers of points. However, compared to their contact-based counterparts, these techniques are known to be less accurate. The work presented in this paper aims at improving the accuracy of these techniques through an error correction procedure based on an experimental process that concerns mechanical parts. The influence of the three parameters, defining the relative position and the orientation between the sensor and the surface, is studied. The process used to build an experimental global model of error is presented and applied to a typical part composed of planes or skewed surface. The systematic errors have been reduced by half in comparison to the reference values, while the random errors have slightly increased. This phenomenon is due to the fact that the errors correction model does not take into account the local response of the laser sensor. A second model, taking into account the local defect, has been developed. Its application to an example of inspection of a mechanical part shows an improvement of the results of the correction.  相似文献   

20.
In the present paper, optical fibers are used as focusing unit in the process of laser surface texturing, which can effectively decrease the area of the focused facular point. An original experimental equipment was built and described. Micro-textures of parallel grooves and meshed textures were produced on silicon surface. Extensive experiments proved that micro-marking of 2–3 μm could be etched with proper focusing distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号