首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
An analysis method termed similarity search profiling has been developed to evaluate fingerprint-based virtual screening calculations. The analysis is based on systematic similarity search calculations using multiple template compounds over the entire value range of a similarity coefficient. In graphical representations, numbers of correctly identified hits and other detected database compounds are separately monitored. The resulting profiles make it possible to determine whether a virtual screening trial can in principle succeed for a given compound class, search tool, similarity metric, and selection criterion. As a test case, we have analyzed virtual screening calculations using a recently designed fingerprint on 23 different biological activity classes in a compound source database containing approximately 1.3 million molecules. Based on our predefined selection criteria, we found that virtual screening analysis was successful for 19 of 23 compound classes. Profile analysis also makes it possible to determine compound class-specific similarity threshold values for similarity searching.  相似文献   

5.
Results of systematic virtual screening calculations using a structural key-type fingerprint are reported for compounds belonging to 14 activity classes added to randomly selected synthetic molecules. For each class, a fingerprint profile was calculated to monitor the relative occupancy of fingerprint bit positions. Consensus bit patterns were determined consisting of all bits that were always set on in compounds belonging to a specific activity class. In virtual screening calculations, scale factors were applied to each consensus bit position in fingerprints of query molecules. This technique, called "fingerprint scaling", effectively increases the weight of consensus bit positions in fingerprint comparisons. Although overall prediction accuracy was satisfactory using unscaled calculations, scaling significantly increased the number of correct predictions but only slightly increased the rate of false positives. These observations suggest that fingerprint scaling is an attractive approach to increase the probability of identifying molecules with similar activity by virtual screening. It requires the availability of a series of related compounds and can be easily applied to any keyed fingerprint representation that associates bit positions with specific molecular features.  相似文献   

6.
7.
Benchmark calculations are essential for the evaluation of virtual screening (VS) methods. Typically, classes of known active compounds taken from the medicinal chemistry literature are divided into reference molecules (search templates) and potential hits that are added to background databases assumed to consist of compounds not sharing this activity. Then VS calculations are carried out, and the recall of known active compounds is determined. However, conventional benchmarking is affected by a number of problems that reduce its value for method evaluation. In addition to often insufficient statistical validation and the lack of generally accepted evaluation standards, the artificial nature of typical benchmark settings is often criticized. Retrospective benchmark calculations generally overestimate the potential of VS methods and do not scale with their performance in prospective applications. In order to provide additional opportunities for benchmarking that more closely resemble practical VS conditions, we have designed a publicly available compound database (DB) of reproducible virtual screens (REPROVIS-DB) that organizes information from successful ligand-based VS applications including reference compounds, screening databases, compound selection criteria, and experimentally confirmed hits. Using the currently available 25 hand-selected compound data sets, one can attempt to reproduce successful virtual screens with other than the originally applied methods and assess their potential for practical applications.  相似文献   

8.
9.
10.
Fingerprint scaling is a method to increase the performance of similarity search calculations. It is based on the detection of bit patterns in keyed fingerprints that are signatures of specific compound classes. Application of scaling factors to consensus bits that are mostly set on emphasizes signature bit patterns during similarity searching and has been shown to improve search results for different fingerprints. Similarity search profiling has recently been introduced as a method to analyze similarity search calculations. Profiles separately monitor correctly identified hits and other detected database compounds as a function of similarity threshold values and make it possible to estimate whether virtual screening calculations can be successful or to evaluate why they fail. This similarity search profile technique has been applied here to study fingerprint scaling in detail and better understand effects that are responsible for its performance. In particular, we have focused on the qualitative and quantitative analysis of similarity search profiles under scaling conditions. Therefore, we have carried out systematic similarity search calculations for 23 biological activity classes under scaling conditions over a wide range of scaling factors in a compound database containing approximately 1.3 million molecules and monitored these calculations in similarity search profiles. Analysis of these profiles confirmed increases in hit rates as a consequence of scaling and revealed that scaling influences similarity search calculations in different ways. Based on scaled similarity search profiles, compound sets could be divided into different categories. In a number of cases, increases in search performance under scaling conditions were due to a more significant relative increase in correctly identified hits than detected false-positives. This was also consistent with the finding that preferred similarity threshold values increased due to fingerprint scaling, which was well illustrated by similarity search profiling.  相似文献   

11.
12.
13.
The evaluation of the scaffold hopping potential of computational methods is of high relevance for virtual screening. For benchmark calculations, classes of known active compounds are utilized. Ideally, such classes should have a well-defined content of structurally diverse scaffolds. However, in reported benchmark investigations, the choice of activity classes is often difficult to rationalize. To provide a compendium of well-characterized test cases for the assessment of scaffold hopping potential, structural distances between scaffolds were systematically calculated for compound classes available in the ChEMBL database. Nearly seven million scaffold pairs were evaluated. On the basis of the global scaffold distance distribution, a threshold value for large scaffold distances was determined. Compound data sets were ranked based on the proportion of scaffold pairs with large distances they contained, taking additional criteria into account that are relevant for virtual screening. A set of 50 activity classes is provided that represent attractive test cases for scaffold hopping analysis and benchmark calculations.  相似文献   

14.
15.
16.
Similarity searching using molecular fingerprints is a widely used approach for the identification of novel hits. A fingerprint search involves many pairwise comparisons of bit string representations of known active molecules with those precomputed for database compounds. Bit string overlap, as evaluated by various similarity metrics, is used as a measure of molecular similarity. Results of a number of studies focusing on fingerprints suggest that it is difficult, if not impossible, to develop generally applicable search parameters and strategies, irrespective of the compound classes under investigation. Rather, more or less, each individual search problem requires an adjustment of calculation conditions. Thus, there is a need for diagnostic tools to analyze fingerprint-based similarity searching. We report an analysis of fingerprint search calculations on different sets of structurally diverse active compounds. Calculations on five biological activity classes were carried out with two fingerprints in two compound source databases, and the results were analyzed in histograms. Tanimoto coefficient (Tc) value ranges where active compounds were detected were compared to the distribution of Tc values in the database. The analysis revealed that compound class-specific effects strongly influenced the outcome of these fingerprint calculations. Among the five diverse compound sets studied, very different search results were obtained. The analysis described here can be applied to determine Tc intervals where scaffold hopping occurs. It can also be used to benchmark fingerprint calculations or estimate their probability of success.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号