首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined.Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuel mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NOX emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed.  相似文献   

3.
葛高杨  马元  侯世卓  夏镇娟  马虎  邓利  周长省 《爆炸与冲击》2021,41(11):112102-1-112102-12

为了研究当量比对汽油燃料两相旋转爆轰发动机工作特性的影响,开展了以高总温空气为氧化剂的气液两相旋转爆轰实验研究。旋转爆轰发动机环形燃烧室外径、内径和长度分别为202、166和155 mm。汽油和高温空气采用高压雾化喷嘴与环缝对撞喷注的方式混合,以此提高推进剂的掺混效果与活性,采用预爆轰管作为点火装置。实验通过改变汽油质量流量改变推进剂当量比,并基于燃烧室内测得的高频动态压力和平均静压,对气液两相旋转爆轰波的传播模态和传播特性以及发动机的工作特性进行了详细分析。实验结果表明:在当量比为0.79~1.25时,燃烧室内均实现了旋转爆轰波的连续自持传播,且随着当量比的增加,爆轰波传播模态从双波对撞/单波的混合模态转变为单波模态;降低当量比至0.61~0.66,爆轰波传播稳定性变差,传播模态表现为间断爆轰以及零星爆轰;进一步降低当量比至0.53,爆轰波起爆失败。此外,燃烧室平均绝对压力与爆轰波平均传播频率均随着当量比的增加呈先增大后减小的趋势,极大值出现在当量比1.19附近。在此工况下获得了最佳实验结果,旋转爆轰波的平均传播频率为1 900.9 Hz,平均传播速度为1 110.8 m/s,与高频压力信号经快速傅里叶变换得到的主频基本一致,爆轰波传播速度存在严重亏损。

  相似文献   

4.
The presence of a film of surface-active agents leads to a change of the force acting on the surface of a liquid. This change does not lead to a simple decrease of the surface tension , and it is connected with the appearance of tangential forces acting on the free surface of the fluid [1]. The stability of the free surface of a liquid with a film of a surface-active agent in a variable gravitational field is examined. The linear formulation of the problem is solved. A solution is sought in the form of a series in powers of the small viscosity by the method of Laplace transforms in time and Fourier transforms in the x and y variables (the xy-plane coincides with the undisturbed liquid surface). An integrodifferential equation of the second-order with periodic coefficients is derived for the displacement of the surface from the equilibrium position. The solution is found by the method of averaging [2]. It is shown that the excitation energy should not be less than the energy dissipated in the system. It is shown that the presence of the film substantially increases the threshold of the instability.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 159–162, September–October, 1976.The authors thank G. Z. Gershuna for calling their attention to this problem.  相似文献   

5.
6.
The spatial and temporal variation of the fuel concentration (air/fuel ratio) in a model engine was quantified by laser Rayleigh scattering. Fuel was simulated by gaseous Freon-12 injected at various timings and quantities into the intake port. The results showed that the fuel concentration in the engine cylinder was strongly dependent on the injection timing and duration and that the Rayleigh system was able to identify spatial variations of the order of one air/fuel ratio at realistic mixture strengths.  相似文献   

7.
液态燃料对连续旋转爆轰发动机爆轰特性的影响   总被引:3,自引:0,他引:3  
为了研究液态燃料对连续旋转爆轰发动机爆轰特性的影响,采用CE/SE方法对以汽油/富氧空气为燃料的CRDE进行数值模拟,分析了不同液滴半径、当量比对爆轰性能参数的影响。计算结果表明:随着液滴半径增大,爆轰压力峰值、温度峰值以及爆轰波速度均降低,且压力峰值与温度峰值在爆轰波传播过程中出现不稳定现象;当增大到70 μm时,爆轰波将无法成功起爆。随着当量比的增大,CRDE爆轰波速度及平均推力增大,爆轰压力、温度以及气相周向速度的峰值均先增大后减小。在当量比1.1附近,爆轰压力与温度的峰值出现极大值;而气相周向速度峰值的极大值出现在当量比0.9附近。基于燃料的比冲随着当量比增大而减小。  相似文献   

8.
9.
The large eddy simulation(LES) approach implemented in the KIVA-3V code and based on one-equation sub-grid turbulent kinetic energy model are employed for numerical computation of diesel sprays in a constant volume vessel and in a Caterpillar 3400 series diesel engine.Computational results are compared with those obtained by an RANS(RNG k-ε) model as well as with experimental data.The sensitivity of the LES results to mesh resolution is also discussed.The results show that LES generally provides flow and spray characteristics in better agreement with experimental data than RANS;and that small-scale random vortical structures of the in-cylinder turbulent spray field can be captured by LES.Furthermore,the penetrations of fuel droplets and vapors calculated by LES are larger than the RANS result,and the sub-grid turbulent kinetic energy and sub-grid turbulent viscosity provided by the LES model are evidently less than those calculated by the RANS model.Finally,it is found that the initial swirl significantly affects the spray penetration and the distribution of fuel vapor within the combustion chamber.  相似文献   

10.
Earth penetration weapon (EPW) is applicable for attacking underground targets protected by reinforced concrete and rocks. With increasing impact velocity, the mass loss/abrasion of penetrator increases, which significandy decreases the penetration efficiency due to the change of nose shape. The abrasion may induce instability of the penetrator, and lead to failure of its structure. A common disadvantage, i.e. dependence on corresponding experimen- tal results, exists in all the available formulae, which limits their ranges of application in estimating the mass loss of penetrator. In this paper, we conduct a parametric study on the mass loss of penetrator, and indicate that the mass loss of penetrator can be determined by seven variables, i.e., the initial impact velocity, initial nose shape, melting heat, shank diameter of projectile and density and strength of target as well as the aggregate hardness of target. Further discussion on factors dominant in the mass abrasion of penetrator are given, which may be helpful for optimizing the target or the projectile for defensive or offensive objectives, respectively.  相似文献   

11.
液滴在气体介质中剪切破碎的数值模拟研究   总被引:4,自引:0,他引:4  
液滴变形和破碎是燃料抛撒问题的重要过程.本文将VOF方法和标准k-ε湍流模型组合,建立了计算液滴在气流中变形破碎过程的数值方法.数值模拟了相关的实验,计算得到的液滴破碎过程与实验结果符合较好.在此基础上,分析了几个关键参数(Weber数、Ohnesorge数、液气密度比)对液滴破碎过程的影响.计算结果表明,Weber数...  相似文献   

12.
Breakup characteristics of liquid droplets impinging on a hot surface are investigated experimentally with the wall temperatures in the Leidenfrost temperature range of 220–330°C for n-decane fuel. Factors influencing droplet breakup are wall temperature, impinging velocity, droplet diameter and impinging angle. The 50% breakup probability shows that the impinging velocity decreases linearly with the droplet diameter increase and there exists an optimum impinging angle near 80° having the minimum value in the impinging velocity for given wall temperature and droplet size. Near the wall temperature of 250°C corresponding to the Leidenfrost temperature, a peculiar nonlinear behavior in the breakup probability is observed.This work was supported by the Turbo and Power Machinery Research Center, Seoul National University.  相似文献   

13.
The coupling influence of airflow and temperature on the two-dimensional distribution of the film resulted from fuel spray impinging on a horizontal flat wall was studied with experiments. The horizontal airflow direction was perpendicular to the vertical axis of the injection spray. The results show that, as air velocity increases, the film shape turns from a circle to an oblong. As wall temperature increases, the film area shrinks. Film thickness decreases as wall temperature or air velocity increases. The boiling point of the fuel is an important temperature to affect the film area and the film thickness. Film center moves more far away in the downstream direction as air velocity increases. For a certain air velocity, film center moves less far away as wall temperature increases.  相似文献   

14.
A new type of mixture fuel, sludge-oil-coal agglomerate (SOCA), was catalytically gasified with steam in a thermobalance reactor under atmospheric pressure. All the four catalysts studied (KeCO3, CaO, NiO and Fe2O3) were found capable of enhancing the steam gasification rate and significantly increasing the conversion of carbon. The ranking of catalytic activity was found to be K2CO3 >> CaO > NiO > Fe2O3. A modified volumetric-reaction model in the literature was used to describe the conversion behavior of the steam gasification studied by evaluating the kinetic parameters. Expressions of the apparent gasification rates for SOCA were presented for the design of catalytic gasification processes.  相似文献   

15.
In the present work, the numerical model developed earlier by the same authors [5] is refined and recast in non-dimensional form. The refined model is calibrated with recent experiments at different bed air-inlet temperatures. Excellent agreement between the numerical results and experiments is obtained. The refined model is then used to conduct an extensive parametric study. The objectives of the parametric study are: (i) to determine the effect of the non-dimensional parameters (α2, α3 and α4) on the bed performance; (ii) to indicate the conditions required for favourable bed operation, and (iii) to compare the fluidized-bed performance with a small-particle packed bed performance. The numerical results are presented as time-histories of average bed temperature ( \(\bar \theta _b \) ) and bed efficiency(η). The performance histories are given for different value of each parameter (α2, α3, and α4). The study shows that the fluidized bed behaves favourably for α2 < 10, α3> 30 and α4 < 10. Moreover, it was concluded that the small particle packed bed, in general, offers better performance behaviour over a fluidized bed having the same bed size and heat input.  相似文献   

16.
17.
Experiments were conducted with a Hartmann–Sprenger tube (H–S) to study the effect of different parameters on the frequency and amplitude of acoustic fluctuations excited when the H–S underexpanded jet impinges on an in-line cavity. Time averaged shadowgraphs were acquired to study the flow field between the underexpanded jet and the cavity for varying parameters of the H–S tube. It was observed that the H–S tube primarily excited two different modes. The first mode corresponds to the jet regurgitant mode (JRG) where the frequency of oscillations scales as a function of the cavity depth. The other mode is screech where an oscillating shock is formed in front of the cavity. The screech mode excites a higher acoustic frequency than the JRG and it is observed to be a strong function of the pressure ratio R, and distance between the jet and the cavity X. At a fixed cavity length, varying standoff distance X could excite either the JRG or screech. At very low standoff distances (X/Dj<0.8), the current study indicates that there is a mode switch from screech to JRG. A cavity to jet diameter, Dc/Dj>1 was found to sustain JRG over a wide range of X. Diameter ratios Dc/Dj<1 sustained high frequency screech modes in a wide range of H–S tube parameters.  相似文献   

18.
The determination of the critical Weg number separating the different breakup regimes has been extensively studied in several experimental and numerical works, while empirical and semi-analytical approaches have been proposed to relate the critical Weg number with the Ohl number. Nevertheless, under certain conditions, the Reg number and the density ratio ε may become important. The present work provides a simple but reliable enough methodology to determine the critical Weg number as a function of the aforementioned parameters in an effort to fill this gap in knowledge. It considers the main forces acting on the droplet (aerodynamic, surface tension and viscous) and provides a general criterion for breakup to occur but also for the transition among the different breakup regimes. In this light, the present work proposes the introduction of a new set of parameters named as Weg,eff and Cal monitored in a new breakup plane. This plane provides a direct relation between gas inertia and liquid viscosity forces, while the secondary effects of Reg number and density ratio have been embedded inside the effective Weg number (Weg,eff)  相似文献   

19.
The study of the transport phenomena in desiccant airflow systems has been addressed in numerous research works, some of them concerning combined processes of cooling, dehumidification and energy recovery. In this paper a detailed numerical model is used to simulate the behaviour of a parallel-plate channel, cyclically exposed to two airflows with different inlet conditions, the plate being composed by a substrate and a desiccant porous layer. The modelled channel is considered to be representative of a real channel of a hygroscopic matrix that is operating at steady state regime, like it occurs in desiccant or enthalpy rotors. The numerical results are treated in order to represent the global behaviour of the hygroscopic rotor under steady state conditions. Results of a parametric study are presented as maps of isovalues of the heat and mass transfer rates and of the outlet states of both airflows, considering channels of distinct wall thickness, of different thickness of the desiccant and the subtract layers, together with wide ranges of the rotation speed and of the wheel partition. The mapped results presented provide an overview of the operation characteristics of hygroscopic rotors, allowing a quick determination of the optimum range of values for relevant parameters, such as the rotation speed and the wheel partition. The model is thus an interesting tool for design and manufacture purposes of enthalpy and desiccant wheels.  相似文献   

20.
Particle image velocimetry is applied to measure the vertical (r–z) plane flow structures in a light-duty direct-injection diesel engine with a realistic piston geometry. The measurements are corrected for optical distortions due to the curved piston bowl walls and the cylindrical liner. Mean flow fields are presented and contrasted for operation both with and without fuel injection and combustion. For operation with combustion, the two-dimensional divergence of the measured mean velocity fields is employed as a qualitative indicator of the locations of mean heat release. In agreement with numerical simulations, dual-vortex, vertical plane mean flow structures that may enhance mixing rates are formed approximately mid-way through the combustion event. Late in the cycle a toroidal vortex forms outside the bowl mouth. Imaging studies suggest that soot and partially oxidized fuel trapped within this vortex are slow to mix with surrounding fluid; moreover, the vortex impedes mixing of fluid exiting the bowl with air within the squish volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号