首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use the Ulam method to study spectral properties of the Perron-Frobenius operators of dynamical maps in a chaotic regime. For maps with absorption we show numerically that the spectrum is characterized by the fractal Weyl law recently established for nonunitary operators describing poles of quantum chaotic scattering with the Weyl exponent ν = d-1, where d is the fractal dimension of corresponding strange set of trajectories nonescaping in future times. In contrast, for dissipative maps we numerically find the Weyl exponent ν = d/2 where d is the fractal dimension of strange attractor. The Weyl exponent can be also expressed via the relation ν = d0/2 where d0 is the fractal dimension of the invariant sets. We also discuss the properties of eigenvalues and eigenvectors of such operators characterized by the fractal Weyl law.  相似文献   

2.
We study the properties of spectrum and eigenstates of the Google matrix of a directed network formed by the procedure calls in the Linux Kernel. Our results obtained for various versions of the Linux Kernel show that the spectrum is characterized by the fractal Weyl law established recently for systems of quantum chaotic scattering and the Perron-Frobenius operators of dynamical maps. The fractal Weyl exponent is found to be ν 0.65 that corresponds to the fractal dimension of the network d 1.3. An independent computation of the fractal dimension by the cluster growing method, generalized for directed networks, gives a close value d 1.4. The eigenmodes of the Google matrix of Linux Kernel are localized on certain principal nodes. We argue that the fractal Weyl law should be generic for directed networks with the fractal dimension d < 2.  相似文献   

3.
We present a conjecture relating the density of quantum resonances for an open chaotic system to the fractal dimension of the associated classical repeller. Mathematical arguments justifying this conjecture are discussed. Numerical evidence based on computation of resonances of systems of n disks on a plane are presented supporting this conjecture. The result generalizes the Weyl law for the density of states of a closed system to chaotic open systems.  相似文献   

4.
In the semiclassical limit of open ballistic quantum systems, we demonstrate the emergence of instantaneous decay modes guided by classical escape faster than the Ehrenfest time. The decay time of the associated quasibound states is smaller than the classical time of flight. The remaining long-lived quasibound states obey random-matrix statistics, renormalized in compliance with the recently proposed fractal Weyl law for open systems [W.T. Lu, S. Sridhar, and M. Zworski, Phys. Rev. Lett. 91, 154101 (2003)]. We validate our theory numerically for a model system, the open kicked rotator.  相似文献   

5.
We study asymptotical behaviour of resonances for a quantum graph consisting of a finite internal part and external leads placed into a magnetic field, in particular, the question whether their number follows the Weyl law. We prove that the presence of a magnetic field cannot change a non-Weyl asymptotics into a Weyl one and vice versa. On the other hand, we present examples demonstrating that for some non-Weyl graphs the “effective size” of the graph, and therefore the resonance asymptotics, can be affected by the magnetic field.  相似文献   

6.
7.
Quantum weak energy inequalities have recently been extensively discussed as a condition on the dynamical stability of quantum field states, particularly on curved spacetimes. We formulate the notion of a quantum weak energy inequality for general dynamical systems on static background spacetimes and establish a connection between quantum weak energy inequalities and thermodynamics. Namely, for such a dynamical system, we show that the existence of a class of states satisfying a quantum weak inequality implies that passive states (e.g., mixtures of ground- and thermal equilibrium states) exist for the time-evolution of the system and, therefore, that the second law of thermodynamics holds. As a model system, we consider the free scalar quantum field on a static spacetime. Although the Weyl algebra does not satisfy our general assumptions, our abstract results do apply to a related algebra which we construct, following a general method which we carefully describe, in Hilbert-space representations induced by quasifree Hadamard states. We discuss the problem of reconstructing states on the Weyl algebra from states on the new algebra and give conditions under which this may be accomplished. Previous results for linear quantum fields show that, on one hand, quantum weak energy inequalities follow from the Hadamard condition (or microlocal spectrum condition) imposed on the states, and on the other hand, that the existence of passive states implies that there is a class of states fulfilling the microlocal spectrum condition. Thus, the results of this paper indicate that these three conditions of dynamical stability are essentially equivalent. This observation is significant because the three conditions become effective at different length scales: The microlocal spectrum condition constrains the short-distance behaviour of quantum states (microscopic stability), quantum weak energy inequalities impose conditions at finite distance (mesoscopic stability), and the existence of passive states is a statement on the global thermodynamic stability of the system (macroscopic stability).Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany. verch@mis.mpg.de  相似文献   

8.
We review the standard notion of Weyl system, which stems from the Weyl formulation of the canonical commutation relations of quantum mechanics, and propose an alternative definition based on the theory of projective representations. Next, we discuss some conceptual advantages of this alternative definition. Finally, we introduce a notion of physical equivalence of group representations and propose a further ‘purely conceptual’ definition of Weyl system based on this notion.  相似文献   

9.
We perform separation of variables for the symplectic Weyl character using Sklyanin’s scheme. Viewing the characters as eigenfunctions of a quantum integrable system, we explicitly construct the separating operator using the Q-operator method. We also construct the inverse of the separating operator, as well as the factorised Hamiltonian.  相似文献   

10.
We present a two-level atomic Bose–Einstein condensate (BEC) with dispersion, which is coupled to a high-finesse optical cavity. We call this model the extended Jaynes–Cummings–Dicke (JC-Dicke) model and introduce an effective Hamiltonian for this system. From the direct product of Heisenberg–Weyl (HW) coherent states for the field and U(2) coherent states for the matter, we obtain the potential energy surface of the system. Within the framework of the mean-field approach, we evaluate the variational energy as the expectation value of the Hamiltonian for the considered state. We investigate numerically the quantum phase transition and the Berry phase for this system. We find the influence of the atom–atom interactions on the quantum phase transition point and obtain a new phase transition occurring when the microwave amplitude changes. Furthermore, we observe that the coherent atoms not only shift the phase transition point but also affect the macroscopic excitations in the superradiant phase.  相似文献   

11.
Entanglement as a vital resource for information processing can be described by special properties of the quantum state. Using the well-known Weyl basis we propose a new Bloch decomposition of the quantum state and study its separability problem. This decomposition enables us to find an alternative characterization of the separability based on the correlation matrix. We show that the criterion is effective in detecting entanglement for the isotropic states, Bell-diagonal states and some PPT entangled states. We also use the Weyl operators to construct an detecting operator for quantum teleportation.  相似文献   

12.
The complex chiral boson model is proposed. We quantize the theory by using Dirac algorithm and discuss the BRST aspects of the complex chiral boson theory. It is also shown that at the quantum level the theory can be expressed in terms of a Weyl fermionic representation. This suggests that the chiral bosons and Weyl fermions in two dimensions be equivalent in their dual form.  相似文献   

13.
We investigate the simple quantum relativistic Toda chain. The ultralocal simple Weyl algebra pair is associated with each site of the chain. Weyl’s q is considered to be inside a unit circle. Both independent Baxter operators Q are constructed explicitly as series in local Weyl generators. The operator-valued Wronskian of Q-s is also calculated.  相似文献   

14.
We investigate the low-energy electronic structure of a Weyl semimetal quantum dot(QD) with a simple model Hamiltonian with only two Weyl points. Distinguished from the semiconductor and topological insulator QDs, there exist both surface and bulk states near the Fermi level in Weyl semimetal QDs. The surface state, distributed near the side surface of the QD, contributes a circular persistent current, an orbital magnetic moment, and a chiral spin polarization with spin-current locking. There are always surface states even for a strong magnetic field, even though a given surface state gradually evolves into a Landau level with increasing magnetic field. It indicates that these unique properties can be tuned via the QD size. In addition, we show the correspondence to the electronic structures of a three-dimensional Weyl semimetal, such as Weyl point and Fermi arc. Because a QD has the largest surface-to-volume ratio, it provides a new platform to verify Weyl semimetal by separating and detecting the signals of surface states. Besides, the study of Weyl QDs is also necessary for potential applications in nanoelectronics.  相似文献   

15.
We construct a map between the quantum field theory of free Weyl or Majorana fermions and the probability distribution of a classical statistical ensemble for Ising spins or discrete bits. More precisely, a Grassmann functional integral based on a real Grassmann algebra specifies the time evolution of the real wave function qτ(t) for the Ising states τ. The time dependent probability distribution of a generalized Ising model obtains as . The functional integral employs a lattice regularization for single Weyl or Majorana spinors. We further introduce the complex structure characteristic for quantum mechanics. Probability distributions of the Ising model which correspond to one or many propagating fermions are discussed explicitly. Expectation values of observables can be computed equivalently in the classical statistical Ising model or in the quantum field theory for fermions.  相似文献   

16.
17.
Weyl semimetals are a new class of Dirac material that possesses bulk energy nodes in three dimensions, in contrast to two dimensional graphene. In this paper, we study a Weyl semimetal subject to an applied magnetic field. We find distinct behavior that can be used to identify materials containing three dimensional Dirac fermions. We derive expressions for the density of states, electronic specific heat, and the magnetization. We focus our attention on the quantum oscillations in the magnetization. We find phase shifts in the quantum oscillations that distinguish the Weyl semimetal from conventional three dimensional Schrödinger fermions, as well as from two dimensional Dirac fermions. The density of states as a function of energy displays a sawtooth pattern which has its origin in the dispersion of the three dimensional Landau levels. At the same time, the spacing in energy of the sawtooth spike goes like the square root of the applied magnetic field which reflects the Dirac nature of the fermions. These features are reflected in the specific heat and magnetization. Finally, we apply a simple model for disorder and show that this tends to damp out the magnetic oscillations in the magnetization at small fields.  相似文献   

18.
We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations.  相似文献   

19.
《Physics letters. [Part B]》1987,195(2):209-212
A two-dimensional SU(N) gauge model coupled to Weyl fermions is studied following recent suggestions for the quantization of potentially anomalous chiral theories. The Weyl fermion determinant is evaluated and the fermionic current is shown to be conserved due to the gauge invariance of the resulting quantum theory. As in the abelian case, the vector meson acquires a mass and the model is consistent provided a regularization parameter is conveniently chosen.  相似文献   

20.
It is known that quantum mechanics can be interpreted as a non-Euclidean deformation of the space-time geometries by means Weyl geometries. We propose here a dynamical explanation of such approach by deriving Bohm potential from minimum condition of Fisher information connected to the entropy of a quantum system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号