首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas-phase ion-molecule reactions play very important roles in interstellar and in plasma chemistry. Motivated by recent astrophysical detection of the SiCN/SiNC radicals and laboratory characterization of some SiCN-containing species, we carried out a detailed potential energy survey on the SiCN+/SiNC(+) + H2O reaction at the Becke's three-parameter Lee-Yang-Parr-B3LYP/6-311G(d,p) and coupled cluster with single, double, and triple excitations-CCSD(T)/6-311 + G(2df,p) (single-point) levels as an attempt towards understanding the SiCN+/SiNC+ reaction mechanisms. In contrast to the carbene-featured analogous CCN+/CNC(+) + H2X (X=O,S) reactions, the title reaction SiCN+/SiNC(+) + H2O are not associated with any competitive silylene-insertion characters. Moreover, the -CN <--> -NC interconversion has a low barrier and plays an important role in determining the final product distributions. This is also in marked difference from the CCN+/CNC+ reaction. It is shown that the isomeric sila-cations SiCN+ and SiNC+ can both react with H2O to barrierlessly generate the major product P1 HOSi(+) + HCN and the minor one P3 HOSi(+) + HNC, whereas other low-lying products such as P2 SiNCO(+) + H2, and P(0) H2NSi(+) + CO are kinetically unfeasible. The high efficiency of the SiCN+/SiNC+ reaction towards H2O and the potential importance of SiCN+/SiNC+ ion chemistry in interstellar and SiCN-based microelectric and photoelectric processes strongly appeals for future laboratory investigations on the SiCN+/SiNC+ chemical reactivity.  相似文献   

2.
对R3SiX(R=H、CH3; X=F、Cl、Br、I)与NR’3 (R’=H、CH3)的加成物用量子化学密度泛函方法在B3LYP/6-31g(d,p)基组下(X原子采用cep-121g基组)进行了两种加成方式的研究. 一种是NR’3沿Si—X键轴向位置的加成, 另一种是NR’3沿Si—X键侧向接近的加成. 计算结果表明, 前者更稳定且更容易形成加成物; Si上斥电子基团不利于Si—N键的形成, 而N上斥电子基团则有利于Si—N键的形成; NH3-H3SiX系列和N(CH3)3-H3SiX系列均能以两种方式进行加成, NH3-H2(CH3)SiX系列仅能沿Si—X键轴向进行加成, 而NH3-H(CH3)2SiX和NH3-(CH3)3SiX 系列两种方式都不能进行加成; 在同系列加成产物中, 以X=Cl时所得加成物最稳定. 讨论了所有加成物中各键的性能、NBO电荷变化、取代基对加成物结构和稳定性的影响, 并对H3SiX(X=F、Cl、Br、I)与NH3及N(CH3)3加成物在有机溶剂中导电的可能性进行了讨论.  相似文献   

3.
Stationary points for reactions R'R' 'HX(+) + YH --> [R'R' 'X-Y](+) + H(2) (I) and R'(CH(3))HX(+) + YH -->[R'HX-Y](+) + CH(4) (II) (R', R' ' = CH(3), H; X = C, Si; Y = CH(3)O, (CH(3))(2)N, and C(6)H(5)) are located and optimized by the B3LYP/aug-cc-pVDZ method. A similar mechanism was found to be operative for both types of reactions with X = C and X = Si. Formation of the intermediate (adduct) results in the transfer of electron density from the electron-rich bases to the X atoms and in the growth of a positive charge on a hydrogen atom attached to Y. This mobile proton may shift from Y to X, and the relative energies of transition states for elimination reactions (Delta) depend on the ability of the X atom to retain this proton. Therefore, Deltagrows on going from Si to C and with increasing numbers of methyl substituents. For X = C, the Deltavalue for both reactions correlates well with the population of the valence orbitals of X in a wide range from -44 kcal/mol (methyl cation/benzene) to 31 kcal/mol (isopropyl cation/methanol). For X = Si this range is more narrow (from -19 to -5.0 kcal/mol), but all Delta values are negative with the exclusion of silylium ion/benzene systems, adducts of which are pi- rather than sigma-complexes. The energy minima for product complexes for H(2) elimination are very shallow, and several are dissociative. However, complexes with methane which exhibit bonding between X and the methane hydrogen are substantially stronger, especially for systems with X = Si. The latter association energy may reach 8 kcal/mol (Si...H distance is 2 A).  相似文献   

4.
采用CCSD/6-311++G(d,p)//B3LYP/6-311++G(d,p)方法研究了HCHO与卤素原子X(X=F、Cl、Br)的反应机理. 计算结果表明, 卤素原子X(X=F、Cl、Br)主要通过直接提取HCHO中的H原子生成HCO+HX(X=F、Cl、Br). 另外还可以生成稳定的中间体, 中间体再通过卤原子夺氢和氢原子直接解离两个反应通道分别生成HCO+HX(X=F、Cl、Br)和H+XCHO(X=F、Cl、Br). 其中卤原子夺氢通道为主反应通道, HCO和HX(X=F、Cl、Br)为主要的反应产物; 且三个反应的活化能均较低, 说明此类反应很容易进行, 计算结果与实验结果符合很好. 电子密度拓扑分析显示, 在HCHO+X反应通道(b)中出现了T型结构过渡态, 结构过渡态(STS)位于能量过渡态(ETS)之后. 并且按F、Cl、Br的顺序, 结构过渡态出现得越来越晚.  相似文献   

5.
Electrospray ionization (ESI) of tetrameric platinum(II) acetate, [Pt(4)(CH(3)COO)(8)], in methanol generates the formal platinum(III) dimeric cation [Pt(2)(CH(3)COO)(3)(CH(2)COO)(MeOH)(2)](+), which, upon harsher ionization conditions, sequentially loses the two methanol ligands, CO(2), and CH(2)COO to form the platinum(II) dimer [Pt(2)(CH(3)COO)(2)(CH(3))](+). Next, intramolecular sequential double hydrogen-atom transfer from the methyl group concomitant with the elimination of two acetic acid molecules produces Pt(2)CH(+) from which, upon even harsher conditions, PtCH(+) is eventually generated. This degradation sequence is supported by collision-induced dissociation (CID) experiments, extensive isotope-labeling studies, and DFT calculations. Both PtCH(+) and Pt(2)CH(+) react under thermal conditions with the hydrocarbons C(2)H(n) (n=2, 4, 6) and C(3)H(n) (n=6, 8). While, in ion-molecule reactions of PtCH(+) with C(2) hydrocarbons, the relative rates decrease with increasing n, the opposite trend holds true for Pt(2)CH(+). The Pt(2)CH(+) cluster only sluggishly reacts with C(2)H(2), but with C(2)H(4) and C(2)H(6) dihydrogen loss dominates. The reactions with the latter two substrates were preceded by a complete exchange of all of the hydrogen atoms present in the adduct complex. The PtCH(+) ion is much less selective. In the reactions with C(2)H(2) and C(2)H(4), elimination of H(2) occurs; however, CH(4) formation prevails in the decomposition of the adduct complex that is formed with C(2)H(6). In the reaction with C(2)H(2), in addition to H(2) loss, C(3)H(3)(+) is produced, and this process formally corresponds to the transfer of the cationic methylidyne unit CH(+) to C(2)H(2), accompanied by the release of neutral Pt. In the ion-molecule reactions with the C(3) hydrocarbons C(3)H(6) and C(3)H(8), dihydrogen loss occurs with high selectivity for Pt(2)CH(+), but in the reactions of these substrates with PtCH(+) several reaction routes compete. Finally, in the ion-molecule reactions with ammonia, both platinum complexes give rise to proton transfer to produce NH(4)(+); however, only the encounter complex generated with PtCH(+) undergoes efficient dehydrogenation of the substrate, and the rather minor formation of CNH(4)(+) indicates that C-N bond coupling is inefficient.  相似文献   

6.
The cyanomethylidyne (CCN) has been the long-standing subject of extensive theoretical and experimental studies on its structures and spectroscopies. However, there are few investigations on its reactivity. Our very recent theoretical work indicated that even with the simplest methane, the CCN reaction faces almost zero barriers following the carbyne mechanism as CH does. This was suggestive of the powerfulness of the nonatomic and nonhydrogenated CCN radical in depleting old molecules and synthesizing new cyanogen-containing molecules in either combustion or interstellar processes. In this paper, a detailed mechanistic study at the CCSD(T)/6-311+G(2df,p)//B3LYP/6-311g(d,p) and G2M(CC1)//B3LYP/6-311G(d,p) computational levels is reported for the reactions of CCN with a series of sigma-bonded molecules of the second row H(n)X (X,n) = (P,3), (S,2), and (Cl,1). The carbenoid insertion is confirmed as the most favored entrance channel, forming H(n) (-1)XC(H)CN. Subsequently, H(n) (-1)XC(H)CN will predominantly lead to product H(n) (-2)XC(H)CN+H via the H-extrusion processes (except X = Cl). Yet, the CCN+HX (X = Cl) reaction is the exception because XC(H)CN intrinsically has no H-atoms at X for extrusion or migration. At G2M(CC1)//B3LYP/6-311G(d,p) computational level, ClC(H)CN can only dissociate back to the reactant or be stabilized with its isomers upon sufficient collisions or radiation. The carbyne character confirmed in this paper provides a useful base for future experimental and theoretical study on the chemistry of this nonatomic and nonhydrogenated reactive radical. In addition, interestingly, the complexes H(n)X-CCN (X,n) = (P,3) and (S,2) formed in the reactions are found not to be the simple (loosely bound) donor-accepter complexes as those formed in the CCN insertions into other hydrides (NH(3), H(2)O, HF, HCl).On the basis of the comparison with the qualitative features of typical ylides, H(3)P--CCN and H(2)S--CCN are considered to be similar to the ylides in nature, being "ylide-like radicals." They might be observed in some experiments, since they are in deep potential wells on the energy surface.  相似文献   

7.
The cyanomethylidyne radical (CCN) has been a long-standing subject of extensive structural and spectroscopic studies. However, its chemical reactivity has received rather little attention. Recently, we studied the reaction of CCN with the simplest alkane, CH4, which follows a mechanism of carbyne insertion-dissociation rather than that of direct H abstraction proposed by a recent experimental study. However, we are aware that alkanes like CH4 bear no electron lone pairs and thus are not ideal diagnostic molecules for distinguishing between the carbyne-insertion and H-abstraction mechanisms. Hence, we chose a series of sigma-bonded molecules HX (X=OH, NH2, and F) which bear electron lone pairs and are better diagnostics for carbyne-insertion behavior. The new results at the CCSD(T)/6-311+G(2df,p)//B3LYP/6-311G(d,p)+ZPVE, CCSD(T)/aug-cc-pVTZ//B3LYP/6-311G(d,p)+ZPVE, G2M(CC1), and MC-QCISD//B3LYP/6-31G(d)+ZPVE levels definitively confirm the carbyne-insertion behavior of the CCN radical towards HX. In addition, we make the first attempt to understand the reactivity of the CCN radical toward pi-bonded molecules, using the CCN+C2H2 model reaction. This reaction involves carbenoid addition to the C[triple chemical bond]C bond without a potential-energy barrier to form a C3 three-membered cyclic intermediate followed by H extrusion. Therefore, the reactions of CCN with both sigma- and pi-bonded molecules conclusively show that CCN is a reactive carbyne radical and may be more reactive than the well-known CN radical. Future experimental studies, especially on product characterization, are strongly desired to test our proposed carbyne mechanism. The studied reactions of CCN with CH4, NH3, H2O, and C2H2 could be of interest to combustion science and astrophysics, and they could provide efficient routes to form novel cyano-containing molecules in interstellar space.  相似文献   

8.
Gas-phase acidities of CH2=C=X (X = CH2, NH, O, and S) and barriers for the identity proton transfers (X=C=CH2 + HC triple bond C-X- right harpoon over left harpoon -X-C triple bond CH + CH2=C=X) as well as geometries and charge distributions of CH2=C=X, HC triple bond C-X- and the transition states of the proton transfer were determined by ab initio methods at the MP2/6-311+G(d,p)//MP2/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory. The acidities were also calculated at the CCSD(T)/6-311+G(2df,p) level. A major objective of this study was to examine how the enhanced unsaturation of CH2=C=X compared to that of CH3CH=X may affect acidities, transition state imbalances, and intrinsic barriers of the identity proton transfer. The results show that the acidities are all higher while the barriers are lower than for the corresponding CH3CH=X series. The transition states are all imbalanced but less so than for the reactions of CH3CH=X.  相似文献   

9.
A series of reactions of the type Y. + XH(4) --> YH + .XH(3) and Y'. + HX(CH(3))(3) --> Y'H + .X(CH(3))(3), where Y = H, CH(3); Y' = CH(3), C(CH(3))(3); and X = Si, Ge, Sn, Pb are studied using state-of-the-art ab initio electronic structure methods. Second-order M?ller-Plesset perturbation theory; the coupled-cluster singles, doubles, and perturbative triples method; and density functional theory are used with correlation-consistent basis sets (cc-pVNZ, where N = D, T, Q) and their pseudopotential analogs (cc-pVNZ-PP) to determine the transition-state geometries, activation barriers, and thermodynamic properties of these reactions. Trends in the barrier heights as a function of the group IVA atom (Si, Ge, Sn, and Pb) are examined. With respect to kinetics and thermodynamics, the use of a hydrogen attached to a group IVA element as a possible hydrogen donation tool in the mechanosynthesis of diamondoids appears feasible.  相似文献   

10.
The deamidation and dehydration products of Na+(L), where L = asparagine (Asn), glutamine (Gln), aspartic acid (Asp), and glutamic acid (Glu), are examined in detail utilizing collision-induced dissociation (CID) with Xe in a guided ion beam tandem mass spectrometer (GIBMS). Results establish that the Na+(L) complexes decompose upon formation in our dc discharge/flow tube ion source to form a bis-ligand complex, Na+(L-HX)(HX), composed of a sodium cation, the (L-HX) decomposition product, and HX, where HX = NH3 for the amides and H2O for the acids. Analysis of the energy-dependent CID cross sections for the Na+(L-HX)(HX) complexes provides unambiguous identification of the (L-HX) fragmentation products as 3-amino succinic anhydride (a-SA) for Asx and oxo-proline (O-Pro) for Glx. Furthermore, these experiments establish the 0 K sodium cation affinities for these five-membered ring decomposition products and the H2O and NH3 binding affinities of the Na+(a-SA) and Na+(O-Pro) complexes after accounting for unimolecular decay rates, the internal energy of reactant ions, and multiple ion-molecule collisions. Quantum chemical calculations are determined for a number of geometric conformations of all reaction species as well as a number of candidate species for (L-HX) at the B3LYP/6-311+G(d,p) level with single-point energies calculated at MP2(full), B3LYP, and B3P86 levels using a 6-311+G(2d,2p) basis set. This coordinated examination of both the experimental work and quantum chemical calculations allows for a complete characterization of the products of deamidation and dehydration of Asx and Glx, as well as the details of Na+, H2O, and NH3 binding to the decomposition species.  相似文献   

11.
The reactions of Cl atoms with XCH2I (X = H, CH3, Cl, Br, I) have been studied using cavity ring-down spectroscopy in 25-125 Torr total pressure of N2 diluent at 250 K. Formation of the XCH2I-Cl adduct is the dominant channel in all reactions. The visible absorption spectrum of the XCH2I-Cl adduct was recorded at 405-632 nm. Absorption cross-sections at 435 nm are as follows (in units of 10(-18) cm2 molecule(-1)): 12 for CH3I, 21 for CH3CH2I, 3.7 for CH2ICl, 7.1 for CH2IBr, and 3.7 for CH2I2. Rate constants for the reaction of Cl with CH3I were determined from rise profiles of the CH3I-Cl adduct. k(Cl + CH3I) increases from (0.4 +/- 0.1) x 10(-11) at 25 Torr to (2.0 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1) at 125 Torr of N2 diluent. There is no discernible reaction of the CH3I-Cl adduct with 5-10 Torr of O2. Evidence for the formation of an adduct following the reaction of Cl atoms with CF3I and CH3Br was sought but not found. Absorption attributable to the formation of the XCH2I-Cl adduct following the reaction of Cl atoms with XCH2I (X = H, CH3, Br, I) was measured as a function of temperature over the range 250-320 K.  相似文献   

12.
The atmospherically relevant reactions between dimethyl selenide (DMSe) and the molecular halogens (X(2) = Cl(2), Br(2), and I(2)) have been studied with ab initio calculations at the MP2/aug-cc-pVDZ level of theory. Geometry optimization calculations showed that the reactions proceed from the reagents to the products (CH(3)SeCH(2)X + HX) via three minima, a van der Waals adduct (DMSe:X(2)), a covalently bound intermediate (DMSeX(2)), and a product-like complex (CH(3)SeCH(2)X:HX). The computed potential energy surfaces are used to predict what molecular species are likely to be observed in spectroscopic experiments such as gas-phase photoelectron spectroscopy and infrared matrix isolation spectroscopy. It is concluded that, for the reactions of DMSe with Cl(2) and Br(2), the covalent intermediate should be seen in spectroscopic experiments, whereas, in the DMSe + I(2) reaction, the van der Waals adduct DMSe:I(2) should be observed. Comparison is made with previous related calculations and experiments on dimethyl sulfide (DMS) with molecular halogens. The relevance of the results to atmospheric chemistry is discussed. The DMSeX(2) and DMSe:X(2) intermediates are likely to be reservoirs of molecular halogens in the atmosphere which will lead on photolysis to ozone depletion.  相似文献   

13.
Gas-phase kinetics and mechanisms of SiH(3) reactions with SiH(4), Si(2)H(6), Si(3)H(8), and Si(4)H(10), processes of relevance to a-Si thin-film deposition, have been investigated by ab initio molecular orbital and transition-state theory (TST) calculations. Geometric parameters of all the species involved in the title reactions were optimized by density functional theory at the B3LYP and BH&HLYP levels with the 6-311++G(3df,2p) basis set. The potential energy surface of each reaction was refined at the CCSD(T)/6-311++G(3df,2p) level of theory. The results show that the most favorable low energy pathways in the SiH(3) reactions with these silanes occur by H abstraction, leading to the formation of SiH(4) + Si(x)H(2x+1) (silanyl) radicals. For both Si(3)H(8) and n-Si(4)H(10) reactions, the lowest energy barrier channels take place by secondary Si-H abstraction, yielding SiH(4) + s-Si(3)H(7) and SiH(4) + s-Si(4)H(9), respectively. In the i-Si(4)H(10) reaction, tertiary Si-H abstraction has the lowest barrier producing SiH(4) + t-Si(4)H(9). In addition, direct SiH(3)-for-X substitution reactions forming Si(2)H(6) + X (X = H or silanyls) can also occur, but with significantly higher reaction barriers. A comparison of the SiH(3) reactions with the analogous CH(3) reactions with alkanes has been made. The rate constants for low-energy product channels have been calculated for the temperature range 300-2500 K by TST with Eckart tunneling corrections. These results, together with predicted heats of formation of various silanyl radicals and Si(4)H(10) isomers, have been tabulated for modeling of a-Si:H film growth by chemical vapor deposition.  相似文献   

14.
Ab initio molecular orbital calculations have been carried out to determine the minimum-energy pathways and thereby to probe the mechanism of reactions between phosphanylnitrenes (R(1)R(2)P&tbd1;N, R(1), R(2) = H, F) and boranes (H(2)XB, X = H, F, CH(3), and C(2)H(5)). Geometries have been determined using the MP2/6-31G(d,p) model, while relative energies have been estimated using, depending on the size of the system, the quadratic configuration interaction model (QCISD and QCISD(T)) with various basis sets including 6-31G(d,p), 6-311G(d,p), and 6-311++G(d,p). The stability of the primary complex adduct is strongly dependent on the substituents of the boranes. When the borane bears a H atom, the primary adduct is not at all stable and readily collapses to an amine isomer via a H-shift from B to N. This shift becomes more difficult if the substituent is F or CH(3). In the F case, a phosphorane isomer, owing to the strength of the P-F bond, turns out to be favored. When non-hydrogen boranes (BF(3) and B(CH(3) )(3) for example) could be used, the primary adducts could be stabilized and even exist as discrete intermediates. F substituents on the nitrene show no significant qualitative effect. In the H(2)PN + H(2)BC(2)H(5) reaction, a retro-ene reaction of the adduct directly gives rise to an amine product via a five-membered transition structure. In the reverse reaction of a HX molecule plus an iminoborane (RB&tbd1;N-PR(1)R(2) ), both 1,2-addition to B and N and 1,3-addition to B and P reactions are possible.  相似文献   

15.
Density functional theory calculations have been carried out to survey the gas-phase reactions of allylamine with Co+. The geometries and bonding characteristics of all the stationary points involved in the reactions have been investigated at the B3LYP/6-311++G(d,p) level. Final energies are obtained by means of the B3LYP/6-311+G(2df,2pd) single-point calculations. The performance of these theoretical methods is valuated with respect to the available thermochemical data. Co+ strongly binds allylamine by forming a chelated structure in which the metal cation binds concomitantly to the two functional groups of the neutral molecule. Various mechanisms leading to the loss of NH3, NH2, C2H2, and H2 are analyzed in terms of the topology of the potential energy surface. The most favorable mechanism corresponds to the loss of NH3, through a process of C-N activation followed by a concerted beta-H shift. The accompanying NH2 elimination is also discussed. The loss of C2H2 is also favorable, through C-C activation and stepwise beta-H shift, giving Co+(NH2CH3) and Co+H(NH2CH2) as the product ions. Various possible channels for the loss of H2 are considered. The most favorable mechanism of the H2 loss corresponds to a pathway through which the metal acts as a carrier, connecting a hydrogen atom from the methylidyne group of allylamine with a hydrogen atom of the terminal methylene group. The product ion of this pathway has a tricoordinated structure in which Co+ binds to the terminal two Cs and N atoms of the NH2CH2CCH moiety.  相似文献   

16.
The known reactions between a neutral radical and a neutral closed-shell sigma-type molecule are generally associated with the atom/group-abstraction (e.g., CN, OH reactions) or the carbenoid insertion processes (e.g., CH reactions). In this article, we describe a new type of neutral radical-molecule reaction that feature the nucleophilic addition and elimination mechanism based on the systematic Gaussian-3//MP2(full)/6-31G(d) investigations on the PH(3)CH+HX model reactions (X = CH(3), NH(2), OH, F, CH(2)F, CHF(2), CF(3), NHCH(3)/CH(2)NH(2), OCH(3)/CH(2)OH). The novel properties are found to benefit both from the radical and ylidic characters of PH(3)CH, and the type of reagent HX determines the nucleophilic addition reactivity. The present work is the first study on the chemical reactivity of the ylidic radicals.  相似文献   

17.
Product branching ratios (BRs) are reported for ion-molecule reactions of state-prepared nitrogen cation (N(2)(+)) with methane (CH(4)), acetylene (C(2)H(2)). and ethylene (C(2)H(4)) at low temperature using a modified ion imaging apparatus. These reactions are performed in a supersonic nozzle expansion characterized by a rotational temperature of 40 ± 5K. For the N(2)(+) + CH(4) reaction, a BR of 0.83:0.17 is obtained for the dissociative charge-transfer (CT) reaction that gives rise to the formation of CH(3)(+) and CH(2)(+) product ions, respectively. The N(2)(+) + C(2)H(2) ion-molecule reaction proceeds through a nondissociative CT process that results in the sole formation of C(2)H(2)(+) product ions. The reaction of N(2)(+) with C(2)H(4) leads to the formation of C(2)H(3)(+) and C(2)H(2)(+) product ions with a BR of 0.74:0.26, respectively. The reported BR for the N(2)(+) + C(2)H(4) reaction is supportive of a nonresonant dissociative CT mechanism similar to the one that accompanies the N(2)(+) + CH(4) reaction. No dependence of the branching ratios on N(2)(+) rotational level was observed. In addition to providing direct insight into the dynamics of the state-prepared N(2)(+) ion-molecule reactions with the target neutral hydrocarbon molecules, the reported low-temperature BRs are also important for accurate modeling of the nitrogen-dominated upper atmosphere of Saturn's moon, Titan.  相似文献   

18.
The reaction for CH3CH2+N(4S) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single point calculations for all the stationary points were carried out at the QCISD(T)/ 6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2CH2+3NH and H2CN+CH3, and the minor products are the CH3CHN+H in the reaction. The majority of the products CH2CH2+3NH are formed via a direct hydrogen abstraction channel. The products H2CN+CH3 are produced via an addition/dissociation channel. The products CH3CHN+H are produced via an addition/dissociation channel.  相似文献   

19.
在密度泛函理论 B3LYP/6 -31 1 G*水平下 ,研究了 NH2 与 CH4的反应机理 .通过振动频率和内禀反应坐标 ( IRC)分析 ,对反应过渡态进行了确认 .在 QCISD( T) /6 -31 1 G*水平下进行了单点能计算 ,并进行了零点能校正 ,结果表明 ,反应 NH2 + CH4NH3 + CH3 是主要的反应通道 .  相似文献   

20.
王岩*  曾小兰 《物理化学学报》2012,28(12):2831-2838
采用密度泛函理论方法在B3LYP/6-311++G(d,p)水平上, 研究了硅苯与HX (X=F, OH, NH2)的1,2-及1,4-加成反应的微观机理和势能剖面, 考察了Si 原子上的取代基及四氢呋喃溶剂对反应势能剖面的影响. 研究结果表明, 标题反应有两种可能的机理: (1) 硅苯与一个HX (X=F, OH, NH2)分子先形成中间复合物, 然后经过四元环过渡态(机理1)生成最终产物; (2) 硅苯与两个HX分子先形成中间复合物, 然后经过六元环过渡态(机理2)生成另一中间复合物, 该中间复合物脱去一个HX分子形成最终产物. 机理2 在动力学上远较机理1 有利. 1,2-及1,4-加成产物哪种优先形成由动力学控制且与X基团的种类有关. HX在气相中参与加成反应从易到难的次序为: HF>H2O>NH3. Si 原子上具有较强供电子和吸电子性质的取代基, 在热力学和动力学上均有利于反应的进行, 但具有较大体积的2,4,6-三甲基苯基取代基对反应反而不利. 四氢呋喃溶剂在热力学上不利于硅苯与HX的1,2-及1,4-加成反应, 在动力学上对HF或H2O作为加成试剂的反应也不利, 但对NH3作为加成试剂的反应反而有利.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号