首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We provide a semilocal convergence analysis for Newton-like methods using the ωω-versions of the famous Newton–Kantorovich theorem (Argyros (2004) [1], Argyros (2007) [3], Kantorovich and Akilov (1982) [13]). In the special case of Newton’s method, our results have the following advantages over the corresponding ones (Ezquerro and Hernaández (2002) [10], Proinov (2010) [17]) under the same information and computational cost: finer error estimates on the distances involved; at least as precise information on the location of the solution, and weaker sufficient convergence conditions.  相似文献   

2.
We present a semilocal convergence theorem for Newton’s method (NM) on spaces with a convergence structure. Using our new idea of recurrent functions, we provide a tighter analysis, with weaker hypotheses than before and with the same computational cost as for Argyros (1996, 1997, 1997, 2007) [1], [2], [3] and [5], Meyer (1984, 1987, 1992) [13], [14] and [15]. Numerical examples are provided for solving equations in cases not covered before.  相似文献   

3.
We introduce the new idea of recurrent functions to provide a semilocal convergence analysis for an inexact Newton-type method, using outer inverses. It turns out that our sufficient convergence conditions are weaker than in earlier studies in many interesting cases (Argyros, 2004 [5] and [6], Argyros, 2007 [7], Dennis, 1971 [14], Deuflhard and Heindl, 1979 [15], Gutiérrez, 1997 [16], Gutiérrez et al., 1995 [17], Häubler, 1986 [18], Huang, 1993 [19], Kantorovich and Akilov, 1982 [20], Nashed and Chen, 1993 [21], Potra, 1982 [22], Potra, 1985 [23]).  相似文献   

4.
The famous Newton-Kantorovich hypothesis (Kantorovich and Akilov, 1982 [3], Argyros, 2007 [2], Argyros and Hilout, 2009 [7]) has been used for a long time as a sufficient condition for the convergence of Newton’s method to a solution of an equation in connection with the Lipschitz continuity of the Fréchet-derivative of the operator involved. Here, using Lipschitz and center-Lipschitz conditions, and our new idea of recurrent functions, we show that the Newton-Kantorovich hypothesis can be weakened, under the same information. Moreover, the error bounds are tighter than the corresponding ones given by the dominating Newton-Kantorovich theorem (Argyros, 1998 [1]; [2] and [7]; Ezquerro and Hernández, 2002 [11]; [3]; Proinov 2009, 2010 [16] and [17]).Numerical examples including a nonlinear integral equation of Chandrasekhar-type (Chandrasekhar, 1960 [9]), as well as a two boundary value problem with a Green’s kernel (Argyros, 2007 [2]) are also provided in this study.  相似文献   

5.
We use Newton’s method to approximate a locally unique solution of an equation in a Banach space setting. We introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton’s method than before [J. Appell, E. De Pascale, J.V. Lysenko, P.P. Zabrejko, New results on Newton–Kantorovich approximations with applications to nonlinear integral equations, Numer. Funct. Anal. Optim. 18 (1997) 1–17; I.K. Argyros, The theory and application of abstract polynomial equations, in: Mathematics Series, St. Lucie/CRC/Lewis Publ., Boca Raton, Florida, USA, 1998; I.K. Argyros, Concerning the “terra incognita” between convergence regions of two Newton methods, Nonlinear Anal. 62 (2005) 179–194; I.K. Argyros, Convergence and Applications of Newton-Type Iterations, Springer-Verlag Publ., New York, 2008; S. Chandrasekhar, Radiative Transfer, Dover Publ., New York, 1960; F. Cianciaruso, E. De Pascale, Newton–Kantorovich approximations when the derivative is Hölderian: Old and new results, Numer. Funct. Anal. Optim. 24 (2003) 713–723; N.T. Demidovich, P.P. Zabrejko, Ju.V. Lysenko, Some remarks on the Newton–Kantorovich method for nonlinear equations with Hölder continuous linearizations, Izv. Akad. Nauk Belorus 3 (1993) 22–26. (in Russian); E. De Pascale, P.P. Zabrejko, Convergence of the Newton–Kantorovich method under Vertgeim conditions: A new improvement, Z. Anal. Anwendvugen 17 (1998) 271–280; L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; J.V. Lysenko, Conditions for the convergence of the Newton–Kantorovich method for nonlinear equations with Hölder linearizations, Dokl. Akad. Nauk BSSR 38 (1994) 20–24. (in Russian); B.A. Vertgeim, On conditions for the applicability of Newton’s method, (Russian), Dokl. Akad. Nauk., SSSR 110 (1956) 719–722; B.A. Vertgeim, On some methods for the approximate solution of nonlinear functional equations in Banach spaces, Uspekhi Mat. Nauk 12 (1957) 166–169. (in Russian); English transl.:; Amer. Math. Soc. Transl. 16 (1960) 378–382] provided that the Fréchet-derivative of the operator involved is pp-Hölder continuous (p∈(0,1]p(0,1]).  相似文献   

6.
We provide a new semilocal convergence analysis for generating an inexact Newton method converging to a solution of a nonlinear equation in a Banach space setting. Our analysis is based on our idea of recurrent functions. Our results are compared favorably to earlier ones by others and us (Argyros (2007, 2009) [5] and [6], Argyros and Hilout (2009) [7], Guo (2007) [15], Shen and Li (2008) [18], Li and Shen (2008) [19], Shen and Li (2009) [20]). Numerical examples are provided to show that our results apply, but not earlier ones [15], [18], [19] and [20].  相似文献   

7.
Modification of Newton’s method with higher-order convergence is presented. The modification of Newton’s method is based on King’s fourth-order method. The new method requires three-step per iteration. Analysis of convergence demonstrates that the order of convergence is 16. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newton’s method and other methods.  相似文献   

8.
It is well known that Newton’s method for a nonlinear system has quadratic convergence when the Jacobian is a nonsingular matrix in a neighborhood of the solution. Here we present a modification of this method for nonlinear systems whose Jacobian matrix is singular. We prove, under certain conditions, that this modified Newton’s method has quadratic convergence. Moreover, different numerical tests confirm the theoretical results and allow us to compare this variant with the classical Newton’s method.  相似文献   

9.
In this paper, the upper and lower estimates of the radius of the convergence ball of the modified Newton’s method in Banach space are provided under the hypotheses that the Fréchet derivative of the nonlinear operator are center Hölder continuous for the initial point and the solution of the operator. The error analysis is given which matches the convergence order of the modified Newton’s method. The uniqueness ball of solution is also established. Numerical examples for validating the results are also provided, including a two point boundary value problem.  相似文献   

10.
The famous Newton–Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton's method to a solution of an equation. Here we present a “Kantorovich type” convergence analysis for the Gauss–Newton's method which improves the result in [W.M. Häußler, A Kantorovich-type convergence analysis for the Gauss–Newton-method, Numer. Math. 48 (1986) 119–125.] and extends the main theorem in [I.K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. 169 (2004) 315–332]. Furthermore, the radius of convergence ball is also obtained.  相似文献   

11.
We present sufficient convergence conditions for two-step Newton methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The advantages of our approach over other studies such as Argyros et al. (2010) [5], Chen et al. (2010) [11], Ezquerro et al. (2000) [16], Ezquerro et al. (2009) [15], Hernández and Romero (2005) [18], Kantorovich and Akilov (1982) [19], Parida and Gupta (2007) [21], Potra (1982) [23], Proinov (2010) [25], Traub (1964) [26] for the semilocal convergence case are: weaker sufficient convergence conditions, more precise error bounds on the distances involved and at least as precise information on the location of the solution. In the local convergence case more precise error estimates are presented. These advantages are obtained under the same computational cost as in the earlier stated studies. Numerical examples involving Hammerstein nonlinear integral equations where the older convergence conditions are not satisfied but the new conditions are satisfied are also presented in this study for the semilocal convergence case. In the local case, numerical examples and a larger convergence ball are obtained.  相似文献   

12.
Recently, a Newton’s iterative method is attracting more and more attention from various fields of science and engineering. This method is generally quadratically convergent. In this paper, some Chebyshev-type methods with the third order convergence are analyzed in detail and used to compute approximate inverse preconditioners for solving the linear system Ax = b. Theoretic analysis and numerical experiments show that Chebyshev’s method is more effective than Newton’s one in the case of constructing approximate inverse preconditioners.  相似文献   

13.
A local convergence analysis of Newton’s method for solving nonlinear equations, under a majorant condition, is presented in this paper. Without assuming convexity of the derivative of the majorant function, which relaxes the Lipschitz condition on the operator under consideration, convergence, the biggest range for uniqueness of the solution, the optimal convergence radius and results on the convergence rate are established. Besides, two special cases of the general theory are presented as applications.  相似文献   

14.
In this paper, we developed two new families of sixth-order methods for solving simple roots of non-linear equations. Per iteration these methods require two evaluations of the function and two evaluations of the first-order derivatives, which implies that the efficiency indexes of our methods are 1.565. These methods have more advantages than Newton’s method and other methods with the same convergence order, as shown in the illustration examples. Finally, using the developing methodology described in this paper, two new families of improvements of Jarratt method with sixth-order convergence are derived in a straightforward manner. Notice that Kou’s method in [Jisheng Kou, Yitian Li, An improvement of the Jarratt method, Appl. Math. Comput. 189 (2007) 1816-1821] and Wang’s method in [Xiuhua Wang, Jisheng Kou, Yitian Li, A variant of Jarratt method with sixth-order convergence, Appl. Math. Comput. 204 (2008) 14-19] are the special cases of the new improvements.  相似文献   

15.
In this paper, a general family of Steffensen-type methods with optimal order of convergence for solving nonlinear equations is constructed by using Newton’s iteration for the direct Newtonian interpolation. It satisfies the conjecture proposed by Kung and Traub [H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Math. 21 (1974) 634-651] that an iterative method based on m evaluations per iteration without memory would arrive at the optimal convergence of order 2m−1. Its error equations and asymptotic convergence constants are obtained. Finally, it is compared with the related methods for solving nonlinear equations in the numerical examples.  相似文献   

16.
From Kantorovich’s theory we establish a general semilocal convergence result for Newton’s method based fundamentally on a generalization required to the second derivative of the operator involved. As a consequence, we obtain a modification of the domain of starting points for Newton’s method and improve the a priori error estimates. Finally, we illustrate our study with an application to a special case of conservative problems.  相似文献   

17.
The notions of Lipschitz conditions with LL average are introduced to the study of convergence analysis of Gauss–Newton’s method for singular systems of equations. Unified convergence criteria ensuring the convergence of Gauss–Newton’s method for one kind of singular systems of equations with constant rank derivatives are established and unified estimates of radii of convergence balls are also obtained. Applications to some special cases such as the Kantorovich type conditions, γγ-conditions and the Smale point estimate theory are provided and some important known results are extended and/or improved.  相似文献   

18.
A new algorithm for singular value decomposition (SVD) is presented through relating SVD problem to nonlinear systems whose solutions are constrained on hyperplanes. The hyperplane constrained nonlinear systems are solved with the help of Newton’s iterative method. It is proved that our SVD algorithm has the quadratic convergence substantially and all singular pairs are computable. These facts are also confirmed by some numerical examples.  相似文献   

19.
We provide two types of semilocal convergence theorems for approximating a solution of an equation in a Banach space setting using an inexact Newton method [I.K. Argyros, Relation between forcing sequences and inexact Newton iterates in Banach spaces, Computing 63 (2) (1999) 134–144; I.K. Argyros, A new convergence theorem for the inexact Newton method based on assumptions involving the second Fréchet-derivative, Comput. Appl. Math. 37 (7) (1999) 109–115; I.K. Argyros, Forcing sequences and inexact Newton iterates in Banach space, Appl. Math. Lett. 13 (1) (2000) 77–80; I.K. Argyros, Local convergence of inexact Newton-like iterative methods and applications, Comput. Math. Appl. 39 (2000) 69–75; I.K. Argyros, Computational Theory of Iterative Methods, in: C.K. Chui, L. Wuytack (Eds.), in: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co., New York, USA, 2007; X. Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2) (2007) 231–242]. By using more precise majorizing sequences than before [X. Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2) (2007) 231–242; Z.D. Huang, On the convergence of inexact Newton method, J. Zheijiang University, Nat. Sci. Ed. 30 (4) (2003) 393–396; L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; X.H. Wang, Convergence on the iteration of Halley family in weak condition, Chinese Sci. Bull. 42 (7) (1997) 552–555; T.J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (3) (1984) 583–590], we provide (under the same computational cost) under the same or weaker hypotheses: finer error bounds on the distances involved; an at least as precise information on the location of the solution. Moreover if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained.  相似文献   

20.
We present a new semilocal convergence analysis for the Secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our analysis is based on the weaker center-Lipschitz concept instead of the stronger Lipschitz condition which has been ubiquitously employed in other studies such as Amat et al. (2004)  [2], Bosarge and Falb (1969)  [9], Dennis (1971)  [10], Ezquerro et al. (2010)  [11], Hernández et al. (2005, 2000)   and , Kantorovich and Akilov (1982)  [14], Laasonen (1969)  [15], Ortega and Rheinboldt (1970)  [16], Parida and Gupta (2007)  [17], Potra (1982, 1984–1985, 1985)  ,  and , Proinov (2009, 2010)   and , Schmidt (1978) [23], Wolfe (1978)  [24] and Yamamoto (1987)  [25] for computing the inverses of the linear operators. We also provide lower and upper bounds on the limit point of the majorizing sequences for the Secant method. Under the same computational cost, our error analysis is tighter than that proposed in earlier studies. Numerical examples illustrating the theoretical results are also given in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号