首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coordination of the U(IV) and U(VI) ions as a function of the chloride concentration in aqueous solution has been studied by U L(III)-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The oxidation state of uranium was changed in situ using a gastight spectroelectrochemical cell, specifically designed for the safe use with radioactive solutions. For U(VI) we observed the complexes UO2(H2O)5(2+), UO2(H2O)4Cl+, UO2(H2O)3Cl2(0), and UO2(H2O)2Cl3- with [Cl-] increasing from 0 to 9 M, and for U(IV) we observed the complexes U(H2O)9(4+), U(H2O)8Cl3+, U(H2O)(6-7)Cl2(2+), and U(H2O)5Cl3+. The distances in the U(VI) coordination sphere are U-Oax = 1.76+/-0.02 A, Oeq = 2.41 +/- 0.02 A, and U-Cl = 2.71 +/- 0.02 A; the distances in the U(IV) coordination sphere are U-O = 2.41 +/- 0.02 A and U-Cl = 2.71 +/- 0.02 A.  相似文献   

2.
This study consists of two parts: The first part comprised an experimental determination of the kinetic parameters for the exchange of water between UO2(H2O)5(2+) and bulk water, including an ab initio study at the SCF and MP2 levels of the geometry of UO2(H2O)5(2+), UO2(H2O)4(2+), and UO2(H2O)6(2+) and the thermodynamics of their reactions with water. In the second part we made an experimental study of the rate of water exchange in uranyl complexes and investigated how this might depend on inter- and intramolecular hydrogen bond interactions. The experimental studies, made by using 17O NMR, with Tb3+ as a chemical shift reagent, gave the following kinetic parameters at 25 degrees C: kex = (1.30 +/- 0.05) x 10(6) s(-1); deltaH(not equal to) = 26.1 +/- 1.4 kJ/mol; deltaS(not equal to) = -40 +/- 5J J/(K mol). Additional mechanistic indicators were obtained from the known coordination geometry of U(VI) complexes with unidentate ligands and from the theoretical calculations. A survey of the literature shows that there are no known isolated complexes of UO2(2+) with unidentate ligands which have a coordination number larger than 5. This was corroborated by quantum chemical calculations which showed that the energy gains by binding an additional water to UO2(H2O)4(2+) and UO2(H2O)5(2+) are 29.8 and -2.4 kcal/mol, respectively. A comparison of the change in deltaU for the reactions UO2(H2O)5(2+)--> UO2(H2O)4(2+) + H2O and UO2(H2O)5(2+) + H2O --> UO2(H2O)6(2+) indicates that the thermodynamics favors the second (associative) reaction in gas phase at 0 K, while the thermodynamics of water transfer between the first and second coordination spheres, UO2(H2O)5(2+) --> UO2(H2O)4(H2O)2+ and UO2(H2O)5(H2O)2+ --> UO2(H2O)6(2+), favors the first (dissociative) reaction. The energy difference between the associative and dissociative reactions is small, and solvation has to be included in ab initio models in order to allow quantitative comparisons between experimental data and theory. Theoretical calculations of the activation energy were not possible because of the excessive computing time required. On the basis of theoretical and experimental studies, we suggest that the water exchange in UO2(H2O)5(2+) follows a dissociative interchange mechanism. The rates of exchange of water in UO2(oxalate)F(H2O)2- (and UO2(oxalate)F2(H2O)2- studied previously) are much slower than in the aqua ion, kex = 1.6 x 10(4) s(-1), an effect which we assign to hydrogen bonding involving coordinated water and fluoride. The kinetic parameters for the exchange of water in UO2(H2O)52+ and quenching of photo excited *UO2(H2O)5(2+) are very near the same, indicating similar mechanisms.  相似文献   

3.
Ab initio molecular dynamics simulations at 300 K, based on density functional theory, are performed to study the hydration shell geometries, solvent dipole, and first hydrolysis reaction of the uranium(IV) (U(4+)) and uranyl(V) (UO(2)(+)) ions in aqueous solution. The solvent dipole and first hydrolysis reaction of aqueous uranyl(VI) (UO(2)(2+)) are also probed. The first shell of U(4+) is coordinated by 8-9 water ligands, with an average U-O distance of 2.42 ?. The average first shell coordination number and distance are in agreement with experimental estimates of 8-11 and 2.40-2.44 ?, respectively. The simulated EXAFS of U(4+) matches well with recent experimental data. The first shell of UO(2)(+) is coordinated by five water ligands in the equatorial plane, with the average U═O(ax) and U-O distances being 1.85 ? and 2.54 ?, respectively. Overall, the hydration shell structure of UO(2)(+) closely matches that of UO(2)(2+), except for small expansions in the average U═O(ax) and U-O distances. Each ion strongly polarizes their respective first-shell water ligands. The computed acidity constants (pK(a)) of U(4+) and UO(2)(2+) are 0.93 and 4.95, in good agreement with the experimental values of 0.54 and 5.24, respectively. The predicted pK(a) value of UO(2)(+) is 8.5.  相似文献   

4.
Szabó Z  Grenthe I 《Inorganic chemistry》2007,46(22):9372-9378
The stoichiometric mechanism, rate constant, and activation parameters for the exchange of the "yl"-oxygen atoms in the dioxo uranium(VI) ion with solvent water have been studied using 17O NMR spectroscopy. The experimental rate equation, (-->)v= k(2obs)[UO2(2+)]tot2/[H+]2, is consistent with a mechanism where the first step is a rapid equilibrium 2U(17)O2(2+) + 2H2O<==>(U(17)O2)2(OH)2(2+) + 2H+, followed by the rate-determining step (U(17)O2)2(OH)2(2+) + H2O<==>(UO2)2*(OH)2(2+) + H2(17)O, where the back reaction can be neglected because the (17)O enrichment in the water is much lower than in the uranyl ion. This mechanism results in the following rate equation (-->)v= d[(UO2)2(OH)2(2+)]/dt = k(2,2)[(UO2)2(OH)2(2+)] = k(2,2*)beta(2,2)[UO2(2+)]2/[H + ]2; with k(2,2) = (1.88 +/- 0.22) x 10(4) h(-1), corresponding to a half-life of 0.13 s, and the activation parameters DeltaH++ = 119 +/- 13 kJ mol-1 and DeltaS++ = 81 +/- 44 J mol(-1) K(-1). *Beta(2,)2 is the equilibrium constant for the reaction 2UO2(2+) + 2H2O<==>(UO2)2(OH)2(2+) + 2H+. The experimental data show that there is no measurable exchange of the "yl"-oxygen in UO2(2+), UO2(OH)+, and UO2(OH)4(2-)/ UO2(OH)5(3-), indicating that "yl"-exchange only takes place in polynuclear hydroxide complexes. There is no "yl"-exchange in the ternary complex (UO2)2(mu-OH)2(F)2(oxalate)2(4-), indicating that it is also necessary to have coordinated water in the first coordination sphere of the binuclear complex, for exchange to take place. The very large increase in lability of the "yl"-bonds in (UO2)2(OH)2(2+) as compared to those of the other species is presumably a result of proton transfer from coordinated water to the "yl"-oxygen, followed by a rapid exchange of the resulting OH group with the water solvent. "Yl"-exchange through photochemical mediation is well-known for the uranyl(VI) aquo ion. We noted that there was no photochemical exchange in UO2(CO3)3(4-), whereas there was a slow exchange or photo reduction in the UO2(OH)4(2-) / UO2(OH)5(3-) system that eventually led to the appearance of a black precipitate, presumably UO2.  相似文献   

5.
The synthesis and structural characterization of a rare example of a uranyl complex possessing three equatorial ligands, [M(THF)2][UO2(N(SiMe3)2)3] (3a, M = Na; 3b, M = K), are described. The sodium salt 3a is prepared by protonolysis of [Na(THF)2]2[UO2(N(SiMe3)2)4], whereas the potassium salt 3b is obtained via a metathesis reaction of uranyl chloride UO2Cl2(THF)2 (4) with 3 equiv of K[N(SiMe3)2]. A single-crystal X-ray diffraction study of 3a revealed a trigonal-bipyramidal geometry about uranium, formed by two axial oxo and three equatorial amido ligands, with average U=O and U-N bond distances of 1.796(5) and 2.310(4) A, respectively. One of the oxo ligands is also coordinated to the sodium counterion. 1H NMR spectroscopic studies indicate that THF adds reversibly as a ligand to 3 to expand the trigonal bipyramidal geometry. The degree to which the coordination sphere in 3 is electronically satisfied with only three amido donors is suggested by (1) the reversible THF coordination, (2) a modest elongation in the bond distances for a five-coordinate U(VI) complex, and (3) the basicity of the oxo ligands as evidenced in the contact to Na. The vibrational spectra of the series of uranyl amido complexes [UO2(N(SiMe3)2)n]2-n (n = 2-4) are compared, to evaluate the effects on the axial U=O bonding as a function of increased electron density donated from the equatorial region. Raman spectroscopic measurements of the nu 1 symmetric O=U=O stretch show progressive axial bond weakening as the number of amido donors is increased. Crystal data for [Na(THF)2][UO2(N(SiMe3)2)3]: orthorhombic space group Pna2(1), a = 22.945(1) A, b = 15.2830(7) A, c = 12.6787(6) A, z = 4, R1 = 0.0309, wR2 = 0.0524.  相似文献   

6.
The local structure of U(VI), U(IV), and Th(IV) sulfato complexes in aqueous solution was investigated by U-L(3) and Th-L(3) EXAFS spectroscopy for total sulfate concentrations 0.05 < or = [SO(4)(2-)] < or = 3 M and 1.0 < or = pH < or = 2.6. The sulfate coordination was derived from U-S and Th-S distances and coordination numbers. The spectroscopic results were combined with thermodynamic speciation and density functional theory (DFT) calculations. In equimolar [SO(4)(2-)]/[UO(2)(2+)] solution, a U-S distance of 3.57 +/- 0.02 Angstrom suggests monodentate coordination, in line with UO(2)SO(4)(aq) as the dominant species. With increasing [SO(4)(2-)]/[UO(2)(2+)] ratio, an additional U-S distance of 3.11 +/- 0.02 Angstrom appears, suggesting bidentate coordination in line with the predominance of the UO(2)(SO(4))(2)(2-) species. The sulfate coordination of Th(IV) and U(IV) was investigated at [SO(4)(2-)]/[M(IV)] ratios > or = 8. The Th(IV) sulfato complex comprises both, monodentate and bidentate coordination, with Th-S distances of 3.81 +/- 0.02 and 3.14 +/- 0.02 Angstrom, respectively. A similar coordination is obtained for U(IV) sulfato complexes at pH 1 with monodentate and bidentate U-S distances of 3.67 +/- 0.02 and 3.08 +/- 0.02 Angstrom, respectively. By increasing the pH value to 2, a U(IV) sulfate precipitates. This precipitate shows only a U-S distance of 3.67 +/- 0.02 Angstrom in line with a monodentate linkage between U(IV) and sulfate. Previous controversially discussed observations of either monodentate or bidentate sulfate coordination in aqueous solutions can now be explained by differences of the [SO(4)(2-)]/[M] ratio. At low [SO(4)(2-)]/[M] ratios, the monodentate coordination prevails, and bidentate coordination becomes important only at higher ratios.  相似文献   

7.
The rates and mechanisms of the electron self-exchange between U(V) and U(VI) in solution have been studied with quantum chemical methods. Both outer-sphere and inner-sphere mechanisms have been investigated; the former for the aqua ions, the latter for binuclear complexes containing hydroxide, fluoride, and carbonate as bridging ligand. The calculated rate constant for the self-exchange reaction UO(2)(+)(aq) + UO(2)(2+)(aq) <=>UO(2)(2+)(aq) + UO(2)(+)(aq), at 25 degrees C, is k = 26 M(-1) s(-1). The lower limit of the rate of electron transfer in the inner-sphere complexes is estimated to be in the range 2 x 10(4) to 4 x 10(6) M(-1) s(-1), indicating that the rate for the overall exchange reaction may be determined by the rate of formation and dissociation of the binuclear complex. The activation energy for the outer-sphere model calculated from the Marcus model is nearly the same as that obtained by a direct calculation of the precursor- and transition-state energy. A simple model with one water ligand is shown to recover 60% of the reorganization energy. This finding is important because it indicates the possibility to carry out theoretical studies of electron-transfer reactions involving M(3+) and M(4+) actinide species that have eight or nine water ligands in the first coordination sphere.  相似文献   

8.
刘世宏  王启标 《分析化学》1994,22(10):984-988
应用X-射线光电子能谱对铀氧化物(UO2、UO3、U3O8)的化学态及其不同价态的相对含量(U^4+/U^6+)进行了研究,结果表明,常温下UO2在空气中可氧化形成UO2+x;UO3易与水结合形成水合物,在高温和高真空中易脱氧,部分U^6+转变成U^4+;U3O8中存在U^4+和U^6+两种价态,其相对量之比为1∶2。铀氧化物中U^4+和U^6+的U4f7/2结合能相差1eV左右,借助于曲线拟合技  相似文献   

9.
Wang X  Andrews L  Li J 《Inorganic chemistry》2006,45(10):4157-4166
Reactions of laser-ablated U atoms and H2O2 molecules produce UO2, H2UO2, and UO2(OH)2 as major products and U(OH)2 and HU(O)OH as minor products. Complementary information is obtained from similar reactions of U atoms with D2O2, with H2 + O2 mixtures, and with H2O in excess Ar. Through extensive relativistic density functional theory calculations, we have determined the geometry structures and ground states of these U species with a variety of oxidation states U(II), U(IV), U(V), and U(VI). The calculated vibrational frequencies, IR intensities, and isotopic frequency ratios are in good agreement with the experimental values, thus supporting assignments of the observed matrix IR spectra. We propose that the reactions proceed by forming an energized [U(OH)4] intermediate from reactions of the excited U atom with two H2O2 molecules. Because of the special stability of the U(VI) oxidation state, this intermediate decomposes to the UO2(OH)2 molecule, which reveals a distinctive difference between the chemistries of U and Th, where the major product in analogous Th reactions is the tetrahedral Th(OH)4 molecule owing to the stable Th(IV) oxidation state.  相似文献   

10.
Na2[UO2(IO3)4(H2O)] has been synthesized under mild hydrothermal conditions. Its structure consists of Na+ cations and [UO2(IO3)4(H2O)](2-) anions. The [UO2(IO3)4(H2O)](2-) anions are formed from the coordination of a nearly linear uranyl, UO2(2+), cation by four monodentate IO(3-) anions and a coordinating water molecule to yield a pentagonal bipyramidal environment around the uranium center. The water molecules form intermolecular hydrogen bonds with the terminal oxo atoms of neighboring [UO2(IO3)4(H2O)](2-) anions to yield one-dimensional chains that extend down the b axis. There are two crystallographically unique iodate anions in the structure of Na2[UO2(IO3)4(H2O)]. One of these anions is aligned so that the lone-pair of electrons is also directed along the b axis. The overall structure is therefore polar, owing to the cooperative alignment of both the hydrogen bonds and the lone-pair of electrons on iodate. The polarity of the monoclinic space group C2 (a = 11.3810(12) A, b = 8.0547(8) A, c = 7.6515(8) A, beta = 90.102(2) degrees , Z = 2, T = 193 K) found for this compound is consistent with the structure. Second-harmonic generation of 532 nm light from a 1064 nm laser source yields a response of approximately 16x alpha-SiO2.  相似文献   

11.
Experimental data on the thermodynamics and reaction mechanism of the inner-sphere fluoride exchange reaction U17O2(2+) + UO2F+ <==> U17O2F+ + UO2(2+) have been compared with different intimate reaction mechanisms using quantum chemical methods. Two models have been tested that start from the outer sphere complexes, (H2O)[U(A)O2F(OH2)4+]...[U(B)O2(OH2)5(2+)] and [U(A)O2F(OH2)4+]...[U(B)O2(OH2)5(2+)]; the geometry and energies of the intermediates and transition states along possible reaction pathways have been calculated using different ab initio methods, SCF, B3LYP and MP2. Both the experimental data and the theoretical results suggest that the fluoride exchange takes place via the formation and breaking of a U-F-U bridge that is the rate determining step. The calculated activation enthalpy DeltaH( not equal) = 30.9 kJ mol(-1) is virtually identical to the experimental value 31 kJ mol(-1); however this agreement may be a coincidence as we do not expect a larger accuracy than 10 kJ mol(-1) with the methods used. The calculations show that the fluoride bridge is formed as an insertion of U(A)O2)F(OH2)4+ into U(B)O2(OH2)5(2+) followed by a subsequent transfer of water from the first to the second coordination sphere of U(B).  相似文献   

12.
Kubatko KA  Burns PC 《Inorganic chemistry》2006,45(25):10277-10281
Two novel U6+ compounds, Sr5(UO2)20(UO6)2O16(OH)6(H2O)6 (SrFm) and Cs(UO2)9U3O16(OH)5 (CsFm), have been synthesized by mild hydrothermal reactions. The structures of SrFm (orthorhombic, C2221, a = 11.668(1), b = 21.065 (3), c = 13.273 A, V = 3532.5(1) A3, Z = 2) and CsFm (trigonal, R3c, a = 11.395(2), c = 43.722(7) A, V = 4916.7(1) A3, Z = 6) are rare examples of uranyl compounds that contain cation-cation interactions where an O atom of one uranyl ion is directly linked to another uranyl ion. Both structures are complex frameworks. SrFm contains sheets of polyhedra that are linked through cation-cation interactions with uranyl ions located between the sheets. CsFm possesses an unusually complex framework of vertex- and edge-sharing U6+ polyhedra that incorporates cation-cation interactions.  相似文献   

13.
Szabó Z  Grenthe I 《Inorganic chemistry》2000,39(22):5036-5043
Equilibria, structures, and ligand-exchange dynamics in binary and ternary U(VI)-L-F- systems, where L is glycolate, alpha-hydroxyisobutyrate, or glycine, have been investigated in 1.0 M NaClO4 by potentiometry and 1H, 17O, and 19F NMR spectroscopy. L may be bonded in two ways: either through the carboxylate end or by the formation of a chelate. In the glycolate system, the chelate is formed by proton dissociation from the alpha-hydroxy group at around pH 3, indicating a dramatic increase, a factor of at least 10(13), of its dissociation constant on coordination to uranium(VI). The L exchange in carboxylate-coordinated UO2LF3(2-) follows an Eigen-Wilkins mechanism, as previously found for acetate. The water exchange rate, k(aq) = 4.2 x 10(5) s(-1), is in excellent agreement with the value determined earlier for UO2(2+)(aq). The ligand-exchange dynamics of UO2(O-CH2-COO)2F3- and the activation parameters for the fluoride exchange in D2O (k(obs) = 12 s(-1), deltaH(double dagger) = 45.8 +/- 2.2 kJ mo(-1), and deltaS(double dagger) = -55.8 +/- 3.6 J K(-1) mol(-1)) are very similar to those in the corresponding oxalate complex, with two parallel pathways, one for fluoride and one for the alpha-oxocarboxylate. The same is true for the L exchange in UO2(O-CH2-COO)2(2-) and UO2(oxalate)2(2-). The exchange of alpha-oxocarboxylate takes place by a proton-assisted chelate ring opening followed by dissociation. Because we cannot decide if there is also a parallel H+-independent pathway, only an upper limit for the rate constant, k1 < 1.2 s(-1), can be given. This value is smaller than those in previously studied ternary systems. Equilibria and dynamics in the ternary uranium(VI)-glycine-fluoride system, investigated by 19F NMR spectroscopy, indicate the formation of one major ternary complex, UO2LF3(2-), and one binary complex, UO2L2 (L = H2N-CH2COO-), with chelate-bonded glycine; log beta(9) = 13.80 +/- 0.05 for the equilibrium UO2(2+) + H2N-CH2COO- + 3F- = UO2(H2N-CH2COO)F3(2-) and log beta(11) = 13.0 +/- 0.05 for the reaction UO2(2+) + 2H2N-CH2COO- = UO2(H2N-CH2COO)2. The glycinate exchange consists of a ring opening followed by proton-assisted steps. The rate of ring opening, 139 +/- 9 s(-1), is independent of both the concentration of H+ and the solvent, H2O or D2O.  相似文献   

14.
Murty BN  Yadav RB  Ramamurthy CK  Syamundar S 《Talanta》1991,38(11):1335-1340
The oxygen to uranium ratio in uranium oxides such as U(3)O(8), UO(2+x) powders and UO(2) fuel pellets has been determined by a new spectrophotometric method. The method can be used for determination of O/U ratio in UO(2) pellets and powders on a routine basis. In the described method, uranium oxides in the powder form are dissolved in 2M sulphuric acid containing a few drops of HF. The concentrations of U(IV) and U(VI) are directly determined by means of the absorbances of these species at different wavelengths. For determination of the O/U ratio in U(3)O(8) powder samples, 630 and 310 nm are the wavelengths chosen for U(IV) and U(VI), respectively. For UO(2+x) powder, where the O/U ratio lies between 2.04 to 2.15, U(IV) and U(VI) are determined at 630 and 300 nm respectively, whereas for UO(2) fuel pellets, where the O/U ratio is less than 2.01, 535 and 285 nm are used. The molar absorptivity of U(IV) at 630 and 535 nm is 21.4 and 6.8 l.mole(-1).cm(-1) and that of U(VI) at 310, 300 and 285 nm is 178.1, 278.6 and 585 l.mole(-1).cm(-1), respectively. Standard deviations of +/-0.002 O/U ratio units for pellets and +/-0.004 O/U ratio units for powders have been achieved.  相似文献   

15.
Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.  相似文献   

16.
The first actinyl phosphinimine complexes have been synthesized and, in the case of uranium, exhibit strong U-N interactions. Competition reactions clearly demonstrate a surprising preference for R3P=NH ligands over R3P=O in the system [AnO2Cl2(R3PX)2] (An = U(VI), Np(VI); R = Ph, Cy; X = O, NH). Spectroscopic evidence for N-donor coordination to [NpO2]2+ in solution indicates chemical similarities to the [UO2]2+ moiety.  相似文献   

17.
The formation of uranyl-peroxide complexes was studied at alkaline media by using UV-Visible spectrophotometry and the STAR code. Two different complexes were found at a H(2)O(2)/U(VI) ratio lower than 2. A graphical method was used in order to obtain the formation constants of such complexes and the STAR program was used to refine the formation constants values because of its capacity to treat multiwavelength absorbance data and refining equilibrium constants. The values obtained for the two complexes identified were: UO(2)(2+) + H(2)O(2) + 4OH(-) UO(2)(O(2))(OH)(2)(2-) + 2H(2)O: log β°(1,1,4) = 28.1 ± 0.1 (1). UO(2)(2+) + 2H(2)O(2) + 6OH(-) UO(2)(O(2))(2)(OH)(2)(4-) + 4H(2)O: log β°(1,2,6) = 36.8 ± 0.2 (2). At hydrogen peroxide concentrations higher than 10(-5) mol dm(-3), and in the absence of carbonate, the UO(2)(O(2))(2)(OH)(2)(4-) complex is predominant in solution, indicating the significant peroxide affinity of peroxide ions for uranium and the strong complexes of uranium(VI) with peroxide.  相似文献   

18.
The pH dependence of uranyl(VI) complexation by citric acid was investigated using Raman and attenuated total reflection FTIR spectroscopies and electrospray ionization mass spectrometry. pH-dependent changes in the nu(s)(UO(2)) envelope indicate that three major UO(2)(2+)-citrate complexes with progressively increasing U=O bond lengths are present over a range of pH from 2.0 to 9.5. The first species, which is the predominant form of uranyl(VI) from pH 3.0 to 5.0, contains two UO(2)(2+) groups in spectroscopically equivalent coordination environments and corresponds to the [(UO(2))(2)Cit(2)](2)(-) complex known to exist in this pH range. At pH values >6.5, [(UO(2))(2)Cit(2)](2)(-) undergoes an interconversion to form [(UO(2))(3)Cit(3)](3)(-) and (UO(2))(3)Cit(2). ESI-MS studies on solutions of varying uranyl(VI)/citrate ratios, pH, and solution counteranion were successfully used to confirm complex stoichiometries. Uranyl and citrate concentrations investigated ranged from 0.50 to 50 mM.  相似文献   

19.
UraniumIV sulfate in an aqueous solution and the solid state has been investigated with extended X-ray absorption fine structure (EXAFS) and X-ray diffraction (XRD). The coordination polyhedron comprises monodentate sulfate, bidentate sulfate, and water molecules. The coordination modes of sulfate in solution have been determined from the U-S distances with EXAFS. The U-S distance of 3.67 +/- 0.02 A indicates monodentate sulfate, and the U-S distance of 3.08 +/- 0.02 A indicates bidentate coordination. The obtained sulfur coordination numbers of a solution with a [SO42-]/[U4+] ratio of 40 suggest species with compositions of [U(SO4,bid)2(SO4,mon)2 x nH2O]4- and [U(SO4,bid)3 (SO4,mon)2 x mH2O]6-. Charge-compensating countercations or ion pairing with Na+ and NH4+ could not be detected with EXAFS. One of the solution species, [U(SO4)5H2O]6-, has been conserved in a crystal. The corresponding crystal structure of Na1.5(NH4)4.5[U(SO4)5 x H2O] x H2O [space group P1, a = 9.4995(16) A, b = 9.8903(16) A, c = 12.744(2) A, alpha = 93.669(2) degrees, beta = 103.846(2) degrees, gamma = 109.339(2) degrees] has been determined by single-crystal XRD. Two monomeric uraniumIV sulfate complexes and three sodium units are linked in alternating rows and form a one-dimensional ribbon structure parallel to the a axis.  相似文献   

20.
The gas-phase infrared spectra of discrete uranyl ([UO2]2+) complexes ligated with acetone and/or acetonitrile were used to evaluate systematic trends of ligation on the position of the O=U=O stretch and to enable rigorous comparison with the results of computational studies. Ionic uranyl complexes isolated in a Fourier transform ion cyclotron resonance mass spectrometer were fragmented via infrared multiphoton dissociation using a free electron laser scanned over the mid-IR wavelengths. The asymmetric O=U=O stretching frequency was measured at 1017 cm(-1) for [UO2(CH3COCH3)2]2+ and was systematically red shifted to 1000 and 988 cm(-1) by the addition of a third and fourth acetone ligand, respectively, which was consistent with increased donation of electron density to the uranium center in complexes with higher coordination number. The values generated computationally using LDA, B3LYP, and ZORA-PW91 were in good agreement with experimental measurements. In contrast to the uranyl frequency shifts, the carbonyl frequencies of the acetone ligands were progressively blue shifted as the number of ligands increased from two to four and approached that of free acetone. This observation was consistent with the formation of weaker noncovalent bonds between uranium and the carbonyl oxygen as the extent of ligation increases. Similar trends were observed for [UO2(CH3CN)n]2+ complexes, although the uranyl asymmetric stretching frequencies were greater than those measured for acetone complexes having equivalent coordination, which is consistent with the fact that acetonitrile is a weaker nucleophile than is acetone. This conclusion was confirmed by the uranyl stretching frequencies measured for mixed acetone/acetonitrile complexes, which showed that substitution of one acetone for one acetonitrile produced a modest red shift of 3-6 cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号