首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The density and the surface tension of molten calcium fluoride have been measured in the temperature range from 1690 to 1790 K by an improved Archimedian method and a ring depressing technique (J. Crystal Growth 187 (1998) 391), respectively. The ring depressing technique was demonstrated as an effective technique to measure the surface tension in comparison with the conventional ring pulling technique. The density varied with the temperature change corresponding to a linear relationship: ρ=3.767−6.94×10−4T (K). The density of the CaF2 melt at the melting point is 2.594 g/cm3, which is equal to the result obtained by Shiraishi and Watanabe (Bull. Res. Inst. Miner. Dressing Metal, Tohoku Univ. 34 (1978) 1), but the temperature coefficient of the density is different from the results obtained by other investigators. The thermal expansion coefficient of calcium fluoride melt linearly increases with temperature heating. The surface tension of molten calcium fluoride indicates a negative linear relationship as a function of the melt temperature: γ(T)=442.4−0.0816×T(K) (mN/m). The surface tension measured using the ring depressing technique is larger than those results obtained by other techniques.  相似文献   

2.
We have used in situ scanning tunneling microscopy (STM) to study the facet formation in the selective growth of pyramidal Si nanocrystals on Si(0 0 1) windows in ultrathin 0.3-nm-thick SiO2 films. Broad (0 0 1) surfaces developed as the top of the crystals, and {1, 1, (2n+1)} (n=1–6) facets formed the sidewalls. As growth continued, the slope angle of sidewall facets increased, and {1, 1, 9} and {1, 1, (2m+1)} (0 <m < 4) facets often came to coexist on the sidewalls. On well-oriented Si(0 0 1) surfaces, layer-by-layer growth in the [0 0 1] direction was dominant. On vicinal Si(0 0 1) surfaces, lateral step growth took place in the initial stage, and the layer-by-layer growth was suppressed until after a large (0 0 1) surface had formed as the top of the crystal.  相似文献   

3.
The growth of type-II textured tungsten disulfide (WS2) thin films by solid state reaction between the spray deposited WO3 and gaseous sulfur vapors with Pb interfacial layer has been studied. X-ray diffraction (XRD) technique is used to measure the degree of preferred orientation ‘S’ and texture of WS2 films. Scanning electron microscopy (SEM) and transmission electron microscopy techniques have been used to examine the microstructure and morphology. The electronic structure and chemical composition were studied using X-ray photoelectron spectroscopy (XPS). The use of Pb interfacial layer for the promotion of type-II texture in WS2 thin films is successfully demonstrated. The presence of (0 0 3 l), (where l=1, 2, 3, …) family of planes in the XRD pattern indicates the strong type-II texture of WS2 thin films. The crystallites exhibit rhombohedral (3R) structure. The large value of ‘S’ (1086) prompts the high degree of preferred orientation as well. The stratum of crystallites with their basal plane parallel to the substrate surface is seen in the SEM image. The EDS and XPS analyses confirm the tungsten to sulfur atomic ratio as 1:1.75. We purport that Pb interfacial layer enhances type-II texture of WS2 thin films greatly.  相似文献   

4.
Step velocities and hillock slopes on the {1 0 0} face of KDP were measured over a supersaturation range of 0<σ<0.15, where σ is the supersaturation. The formation of macrosteps and their evolution with distance from the hillock top were also observed. Hillock slope depended linearly on supersaturation and hillock geometry. The two non-equivalent sectors exhibited different slopes and step velocities. AFM shows an elementary step height of 3.7 Å, or half the unit cell height, whereas previous interferometric experiments assumed the elementary step was a unit cell. Values of the step edge energy (), the kinetic coefficients for the slow and fast directions (βS and βF), and the activation energies for slow and fast step motion (Ea,S and Ea,F) were calculated to be 24.0 erg/cm2, 0.071 cm/s, 0.206 cm/s, 0.26 eV/molecule, and 0.21 eV/molecule, respectively. Analysis of macrostep evolution including the dependence of step height on time and terrace width on distance were performed and compared to predictions of published models. The results do not allow us to distinguish between a shock wave model and a continuous step-doubling model. Analysis within the latter model leads to a characteristic adsorption time for impurities (λ−1) of 0.0716 s.  相似文献   

5.
The MoS2 nanowires with diameters of 4 nm and lengths of 50 nm were synthesized by a hydrothermal method using 0.36 g MoO3 and 1.8 g Na2S as precursors in 0.4 mol/l HCl solution at 260°C. The products are characterized by XRD, XPS, TEM, HTEM and BET. Results show that the as-prepared MoS2 nanowires consist of 1–10 sulfide layers with BET surface areas of 107 m2/g. The possible reaction route and the formation mechanism of the MoS2 nanowires are discussed. The effects of exterior conditions such as pH value, temperature, concentration of precursors and additives on the particle size and morphology of MoS2 crystallites were investigated.  相似文献   

6.
YBa2Cu4O8 is a stoichiometric oxide superconductor of Tc80 K. Unlike YBa2Cu3O7−δ, this compound is free from oxygen vacancy or twin formation and does not have any microscopic disorder in the crystal. Doping with Ca raises its Tc to 90 K. The compound is a promising superconductor for technological application. Up to now, single crystals have not been grown without using specialized apparatus with extremely high oxygen pressure up to 3000 bar and at over 1100 °C due to the limited range of reaction kinetics of the compound. This fact has delayed the progress in the study of its physical properties and potential applications. We present here a simple growth method using KOH as flux that acts effectively for obtaining high-quality single crystals in air/oxygen at the temperature as low as 550 °C. As-grown crystals can readily be separated from the flux and exhibit a perfect orthorhombic morphology with sizes up to 0.7×0.4×0.2 mm3. Our results are reproducible and suggest that the crystals can be grown using a conventional flux method under ambient condition.  相似文献   

7.
In this paper, we compare the properties of ZnO thin films (0 0 0 1) sapphire substrate using diethylzinc (DEZn) as the Zn precursor and deionized water (H2O) and nitrous oxide (N2O) as the O precursors, respectively in the main ZnO layer growth by atmospheric pressure metal–organic chemical vapor deposition (AP-MOCVD) technique. Surface morphology studied by atomic force microscopy (AFM) showed that the N2O-grown ZnO film had a hexagonal columnar structure with about 8 μm grain diameter and the relatively rougher surface compared to that of H2O-grown ZnO film. The full-widths at half-maximum (FWHMs) of the (0 0 0 2) and () ω-rocking curves of the N2O-grown ZnO film by double-crystal X-ray diffractometry (DCXRD) measurement were 260 and 350 arcsec, respectively, indicating the smaller mosaicity and lower dislocation density of the film compared to H2O-grown ZnO film. Compared to H2O-grown ZnO film, the free exciton A (FXA) and its three phonon replicas could be clearly observed, the donor-bound exciton A0X (I10):3.353 eV dominated the 10 K photoluminescence (PL) spectrum of N2O-grown ZnO film and the hydrogen-related donor-bound exciton D0X (I4):3.363 eV was disappeared. The electron mobility (80 cm2/V s) of N2O-grown ZnO film has been significantly improved by room temperature Hall measurement compared to that of H2O-grown ZnO film.  相似文献   

8.
Nucleation and growth of wurtzite AlN layers on nominal and off-axis Si(0 0 1) substrates by plasma-assisted molecular beam epitaxy is reported. The nucleation and the growth dynamics have been studied in situ by reflection high-energy electron diffraction. For the films grown on the nominal Si(0 0 1) surface, cross-sectional transmission electron microscopy and X-ray diffraction investigations revealed a two-domain film structure (AlN1 and AlN2) with an epitaxial orientation relationship of [0 0 0 1]AlN || [0 0 1]Si and AlN1 || AlN2 || [1 1 0]Si. The epitaxial growth of single crystalline wurtzite AlN thin films has been achieved on off-axis Si(0 0 1) substrates with an epitaxial orientation relationship of [0 0 0 1]AlN parallel to the surface normal and 0 1 1 0AlN || [1 1 0]Si.  相似文献   

9.
GaAs1−xNx epilayers were grown on a GaAs(0 0 1) substrate by metalorganic chemical vapor deposition. Composition was determined by high resolution X-ray diffraction. Band gap was measured from 77 to 400 K by using photocurrent measurements. The photocurrent spectra show clear near-band-edge peak and their peak energies drastically decrease with increasing nitrogen composition due to band gap bowing in the GaAs1−xNx epilayers. Those red shifts were particularly notable for low nitrogen compositions. However, the shifts tended to saturate when the nitrogen composition become higher than 0.98%. When the nitrogen composition is in the range 1.68–3.11%, the measured temperature dependence of the energy band gap was nicely fitted. However, the properties for the nitrogen composition range 0.31–0.98% could not be fitted with a single fitting model. This result indicates that the bowing parameter reaches 25.39 eV for low nitrogen incorporation (x=0.31%), and decreases with increasing nitrogen composition.  相似文献   

10.
This paper reports the detail synthesis of a new kind of metal iodate, anhydrous (LiFe1/3)(IO3)2, from aqueous solutions. The synthesized compound shows spinal morphology and is chemical stable up to 400°C. The iodate shows paramagnetic behavior from room temperature down to 4.2 K. At room temperature, the new compound has a hexagonal structure with the lattice parameters a=5.4632(2) Å, c=5.0895(6) Å, Z=1, space group of P63.  相似文献   

11.
Effects of relaxation of interfacial misfit strain and non-stoichiometry on surface morphology and surface and interfacial structures of epitaxial SrTiO3 (STO) thin films on (0 0 1) Si during initial growth by molecular beam epitaxy (MBE) were investigated. In situ reflection high-energy electron diffraction (RHEED) in combination with X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) techniques were employed. Relaxation of the interfacial misfit strain between STO and Si as measured by in situ RHEED indicates initial growth is not pseudomorphic, and the interfacial misfit strain is relaxed during and immediately after the first monolayer (ML) deposition. The interfacial strain up to 15 ML results from thermal mismatch strain rather than lattice mismatch strain. Stoichiometry of STO affects not only surface morphology but interfacial structure. We have identified a nanoscale Sr4Ti3O10 second phase at the STO/Si interface in a Sr-rich film.  相似文献   

12.
NaBi(WO4)2 (NBW) crystals have been grown for the first time by modified-Bridgman method. Influences of some factors on the crystal growth process are discussed. X-ray powder diffraction experiments show that the unit cell parameters of NBW crystal are a=b=0.5284 nm, c=1.1517 nm, and V=0.3215 nm3. The differential thermal analysis shows that the NBW crystal melts at 923°C.  相似文献   

13.
Interconnecting cage-like porous structures of several halide compounds were prepared by the selective leaching of one eutectic phase method. The binary eutectic precursors were prepared by directional solidification using the Bridgman crystal growth technique. Porous NaMgF3 (40% pore volume), CaF2 (57% pore volume) and BaF2 (43% pore volume) crystals were obtained after water leaching the NaF component of the directionally solidified NaF/NaMgF3, NaF/CaF2 and NaF/BaF2 eutectics with the appropriate entangled microstructure. The growth conditions for eutectic-coupled growth and the morphology of the eutectics have been determined. In the coupled growth regime, the size of the eutectic phases “λ” is fairly uniform and varies with the eutectic growth rate “v” as λ2v=constant, which allows us to control the pore size within the 0.5–10 μm range. The simplicity and versatility of the eutectic growth also allows us to fabricate highly aligned porous structures at relatively high production rates.  相似文献   

14.
The absorption tail of undoped and Si-doped GaN films was investigated at different temperatures and under applied electric field. It was found that the spectral dependence of logarithm of absorption coefficient is combined of two linear functions: ln[(hν)]=C1+(hν−Eg)/U1 for hν<3.42 eV and ln[(hν)]=C2+(hν−Eg)/U2 for 3.44<hν<3.5 eV with Urbach energies U1=400–470 meV and U2=10–20 meV. The influence of an electric field effect on the absorption spectra follows the Dow and Redfield theory. It was shown that the intrinsic electric field about 105 V/cm exists in our samples. The implemented analysis of the absorption spectra gives the qualitative method of film characterization.  相似文献   

15.
TiN films were grown on SUS304 substrates heated by an induction furnace in a vertical cold wall reactor. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction were used to characterize the microstructures of films obtained at different deposition conditions (temperature, gas flow rate and gas composition). Film structures obtained in the present vertical reactor had the following features compared with those in the tubular reactor: (1) Abnormally grown “star-shaped” crystals were observed on the surfaces of films deposited in the following ranges of total gas flow rate (QT), temperature (T) and partial pressures (P): 9.0×10−6QT ≤ 1.6×10−5 m3 s−1, 1223 ≤ T ≤ 1273 K, 0.92 ≤ PTiCl4 ≤ 6.18 kPa, PH2 = PN2. The matrix grains were responsible for (211) preferred orientation. (2) Surface morphologies did not vary so much with PTiCl4. On the other hand, a drastic change was brought about by adding HCl to the source gas, i.e., plate-shaped crystals dominated and the large “star-shaped” crystals were no longer present. (3) The apparent activation energy for deposition reaction was 230 kJ/mol (1173 ≤ T ≤ 1273 K) and 76.5 kJ/mol (1273 ≤ T ≤ 1373 K) at PTiCl4 = 2.43 kPa and PH2 = PN2 = 49.45 kPa.  相似文献   

16.
Single crystals of 4-dimethylaminopyridinium dihydrogen phosphate (DMAPDP) (C7H13N2PO4) were grown by the solvent evaporation method. The three-dimensional structure was solved by the single-crystal X-ray diffraction method which belongs to triclinic crystal system and the molecular arrangements in the crystal were studied. The thermal behaviour was investigated using differential scanning calorimetry (DSC) and no phase transition was identified in the temperature region −150 to 230 °C. The thermal parameters—thermal diffusivity (), thermal effusivity (e), thermal conductivity (K) and heat capacity (Cp) of DMAPDP were measured by an improved photopyroelectric technique at room temperature. Dielectric constant and dielectric loss of the grown crystal were evaluated for the frequency range 1–200 KHz in the temperature region 28–135 °C. The Vicker's hardness was measured as 42.2 for a load of 98.07 mN. The laser induced surface damage threshold of DMAPDP crystal was found to be 4.8 GW/cm2 with nanosecond Nd:YAG laser.  相似文献   

17.
Ce substituted Bi1−xCexFeO3 (BCFO) films with x=0–0.15 were deposited on indium tin oxide (ITO)/glass substrates by sol–gel process annealed at 500 °C. Rhombohedral phase was confirmed by XRD study and no impure phases were observed till x=0.15. Substantially enhanced ferroelectricity was observed at room temperature due to the substitution of Ce. In the films with x=0.05 and 0.10, the double remnant polarization are 75.5 and 57.7 μC/cm2 at an applied field 860 kV/cm. Moreover, the breakdown field was enhanced in the films with Ce substitution.  相似文献   

18.
Uniform, submicron BaTiO3 crystallites in tetragonal structure were synthesized by a novel low-temperature liquid–solid reaction method mainly via two simple steps: firstly, BaO2·H2O2 submicron particles of about 130–450 nm were precipitated from the reaction of BaCl2 and H2O2 in a slightly alkaline (pH 8) aqueous solution under the ambient condition; secondly, tetragonal phase BaTiO3 submicrocrystals with the size in the range of 180 to 400 nm could be produced by subjecting the as-prepared BaO2·H2O2 and commercial TiO2 submicron particles to thermal treatment in air at 700 °C for 10 h. The as-obtained products were characterized by X-ray powder diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-atomic emission spectroscopy, and scanning electron microscopy.  相似文献   

19.
We report the structural and electrical properties of InAsSb epilayers grown on GaAs (0 0 1) substrates with mid-alloy composition of 0.5. InSb buffer layer and InAsxSb1−x step-graded (SG) buffer layer have been used to relax lattice mismatch between the epilayer and substrate. A decrease in the full-width at half-maximum (FWHM) of the epilayer is observed with increasing the thickness of the InSb buffer layer. The surface morphology of the epilayer is found to change from 3D island growth to 2D growth and the electron mobility of the sample is increased from 5.2×103 to 1.1×104 cm2/V s by increasing the thickness of the SG layers. These results suggest that high crystalline quality and electron mobility of the InAs0.5Sb0.5 alloy can be achieved by the growth of thick SG InAsSb buffer layer accompanied with a thick InSb buffer layer. We have confirmed the improvement in the structural and electrical properties of the InAs0.5Sb0.5 epilayer by quantitative analysis of the epilayer having a 2.09 μm thick InSb buffer layer and 0.6 μm thickness of each SG layers.  相似文献   

20.
The single-crystalline β-wollastonite (β-CaSiO3) nanowires were prepared via a simple hydrothermal method, in the absence of any template or surfactant using cheap and simple inorganic salts as raw materials. Xonotlite [Ca6(Si6O17)(OH)2] nanowires were first obtained after hydrothermal treatment at a lower temperature of 200 °C for 24 h, and after being calcinated at 800 °C for 2 h, xonotlite nanowires completely transformed into β-wollastonite nanowires and the wire-like structure was preserved. The synthesized β-wollastonite nanowires had a diameter of 10–30 nm, and a length up to tens of micrometers, and the single-crystalline monoclinic parawollastonite structured β-wollastonite was identified by XRD with the space group of P21/a and cell constants of a=15.42 Å, b=7.325 Å, c=7.069 Å and β=95.38°. A possible growth mechanism of β-wollastonite nanowires was also proposed. The advantages of this method for the nanowire synthesis lie in the high yield, low temperature and mild reaction conditions, which will allow large-scale production at low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号