首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In this paper we perform a blow-up and quantization analysis of the fractional Liouville equation in dimension 1. More precisely, given a sequence \(u_k :\mathbb {R}\rightarrow \mathbb {R}\) of solutions to
$$\begin{aligned} (-\Delta )^\frac{1}{2} u_k =K_ke^{u_k}\quad \text {in} \quad \mathbb {R}, \end{aligned}$$
(1)
with \(K_k\) bounded in \(L^\infty \) and \(e^{u_k}\) bounded in \(L^1\) uniformly with respect to k, we show that up to extracting a subsequence \(u_k\) can blow-up at (at most) finitely many points \(B=\{a_1,\ldots , a_N\}\) and that either (i) \(u_k\rightarrow u_\infty \) in \(W^{1,p}_{{{\mathrm{loc}}}}(\mathbb {R}{\setminus } B)\) and \(K_ke^{u_k} {\mathop {\rightharpoonup }\limits ^{*}}K_\infty e^{u_\infty }+ \sum _{j=1}^N \pi \delta _{a_j}\), or (ii) \(u_k\rightarrow -\infty \) uniformly locally in \(\mathbb {R}{\setminus } B\) and \(K_k e^{u_k} {\mathop {\rightharpoonup }\limits ^{*}}\sum _{j=1}^N \alpha _j \delta _{a_j}\) with \(\alpha _j\ge \pi \) for every j. This result, resting on the geometric interpretation and analysis of (1) provided in a recent collaboration of the authors with T. Rivière and on a classical work of Blank about immersions of the disk into the plane, is a fractional counterpart of the celebrated works of Brézis–Merle and Li–Shafrir on the 2-dimensional Liouville equation, but providing sharp quantization estimates (\(\alpha _j=\pi \) and \(\alpha _j\ge \pi \)) which are not known in dimension 2 under the weak assumption that \((K_k)\) be bounded in \(L^\infty \) and is allowed to change sign.
  相似文献   

2.
In this paper, the large time decay of the magneto-micropolar fluid equations on \(\mathbb {R}^n\) (\( n=2,3\)) is studied. We show, for Leray global solutions, that \( \Vert ({\varvec{u}},{\varvec{w}},{\varvec{b}})(\cdot ,t) \Vert _{{L^2(\mathbb {R}^n)}} \rightarrow 0 \) as \(t \rightarrow \infty \) with arbitrary initial data in \( L^2(\mathbb {R}^n)\). When the vortex viscosity is present, we obtain a (faster) decay for the micro-rotational field: \( \Vert {\varvec{w}}(\cdot ,t) \Vert _{{L^2(\mathbb {R}^n)}} = o(t^{-1/2})\). Some related results are also included.  相似文献   

3.
Let A be a 0-sectorial operator with a bounded \(H^\infty (\Sigma _\sigma )\)-calculus for some \(\sigma \in (0,\pi ),\) e.g. a Laplace type operator on \(L^p(\Omega ),\, 1< p < \infty ,\) where \(\Omega \) is a manifold or a graph. We show that A has a \(\mathcal {H}^\alpha _2(\mathbb {R}_+)\) Hörmander functional calculus if and only if certain operator families derived from the resolvent \((\lambda - A)^{-1},\) the semigroup \(e^{-zA},\) the wave operators \(e^{itA}\) or the imaginary powers \(A^{it}\) of A are R-bounded in an \(L^2\)-averaged sense. If X is an \(L^p(\Omega )\) space with \(1 \le p < \infty \), R-boundedness reduces to well-known estimates of square sums.  相似文献   

4.
In this paper we develop the theory of Fourier multiplier operators \(T_{m}:L^{p}({\mathbb R}^{d};X)\rightarrow L^{q}({\mathbb R}^{d};Y)\), for Banach spaces X and Y, \(1\le p\le q\le \infty \) and \(m:{\mathbb R}^d\rightarrow \mathcal {L}(X,Y)\) an operator-valued symbol. The case \(p=q\) has been studied extensively since the 1980s, but far less is known for \(p<q\). In the scalar setting one can deduce results for \(p<q\) from the case \(p=q\). However, in the vector-valued setting this leads to restrictions both on the smoothness of the multiplier and on the class of Banach spaces. For example, one often needs that X and Y are UMD spaces and that m satisfies a smoothness condition. We show that for \(p<q\) other geometric conditions on X and Y, such as the notions of type and cotype, can be used to study Fourier multipliers. Moreover, we obtain boundedness results for \(T_m\) without any smoothness properties of m. Under smoothness conditions the boundedness results can be extrapolated to other values of p and q as long as \(\tfrac{1}{p}-\tfrac{1}{q}\) remains constant.  相似文献   

5.
For \(p\in [1,\infty ]\), we establish criteria for the one-sided invertibility of binomial discrete difference operators \({{\mathcal {A}}}=aI-bV\) on the space \(l^p=l^p(\mathbb {Z})\), where \(a,b\in l^\infty \), I is the identity operator and the isometric shift operator V is given on functions \(f\in l^p\) by \((Vf)(n)=f(n+1)\) for all \(n\in \mathbb {Z}\). Applying these criteria, we obtain criteria for the one-sided invertibility of binomial functional operators \(A=aI-bU_\alpha \) on the Lebesgue space \(L^p(\mathbb {R}_+)\) for every \(p\in [1,\infty ]\), where \(a,b\in L^\infty (\mathbb {R}_+)\), \(\alpha \) is an orientation-preserving bi-Lipschitz homeomorphism of \([0,+\infty ]\) onto itself with only two fixed points 0 and \(\infty \), and \(U_\alpha \) is the isometric weighted shift operator on \(L^p(\mathbb {R}_+)\) given by \(U_\alpha f= (\alpha ^\prime )^{1/p}(f\circ \alpha )\). Applications of binomial discrete operators to interpolation theory are given.  相似文献   

6.
We consider a bounded open set with smooth boundary \(\Omega \subset M\) in a Riemannian manifold (Mg), and suppose that there exists a non-trivial function \(u\in C({\overline{\Omega }})\) solving the problem
$$\begin{aligned} -\Delta u=V(x)u, \,\, \text{ in }\,\,\Omega , \end{aligned}$$
in the distributional sense, with \(V\in L^\infty (\Omega )\), where \(u\equiv 0\) on \(\partial \Omega .\) We prove a sharp inequality involving \(||V||_{L^{\infty }(\Omega )}\) and the first eigenvalue of the Laplacian on geodesic balls in simply connected spaces with constant curvature, which slightly generalises the well-known Faber–Krahn isoperimetric inequality. Moreover, in a Riemannian manifold which is not necessarily simply connected, we obtain a lower bound for \(||V||_{L^{\infty }(\Omega )}\) in terms of its isoperimetric or Cheeger constant. As an application, we show that if \(\Omega \) is a domain on a m-dimensional minimal submanifold of \({\mathbb {R}}^n\) which lies in a ball of radius R, then
$$\begin{aligned} ||V||_{L^{\infty }(\Omega )}\ge \left( \frac{m}{2R}\right) ^{2}. \end{aligned}$$
  相似文献   

7.
This paper considers filtered polynomial approximations on the unit sphere \(\mathbb {S}^d\subset \mathbb {R}^{d+1}\), obtained by truncating smoothly the Fourier series of an integrable function f with the help of a “filter” h, which is a real-valued continuous function on \([0,\infty )\) such that \(h(t)=1\) for \(t\in [0,1]\) and \(h(t)=0\) for \(t\ge 2\). The resulting “filtered polynomial approximation” (a spherical polynomial of degree \(2L-1\)) is then made fully discrete by approximating the inner product integrals by an N-point cubature rule of suitably high polynomial degree of precision, giving an approximation called “filtered hyperinterpolation”. In this paper we require that the filter h and all its derivatives up to \(\lfloor \tfrac{d-1}{2}\rfloor \) are absolutely continuous, while its right and left derivatives of order \(\lfloor \tfrac{d+1}{2}\rfloor \) exist everywhere and are of bounded variation. Under this assumption we show that for a function f in the Sobolev space \(W^s_p(\mathbb {S}^d),\ 1\le p\le \infty \), both approximations are of the optimal order \( L^{-s}\), in the first case for \(s>0\) and in the second fully discrete case for \(s>d/p\), conditions which in both cases cannot be weakened.  相似文献   

8.
An operator \(S_{\varphi ,\psi }^{u}\in \mathcal {L}(L^2)\) is called the dilation of a truncated Toeplitz operator if for two symbols \(\varphi ,\psi \in L^{\infty }\) and an inner function u,
$$\begin{aligned} S_{\varphi ,\psi }^{u}f=\varphi P_uf+\psi Q_uf \end{aligned}$$
holds for \(f\in {L}^{2}\) where \(P_{u}\) denotes the orthogonal projection of \(L^2\) onto the model space \(\mathcal { K}_{u}^2=H^2{\ominus }{{u}H^2}\) and \(Q_u=I-P_u.\) In this paper, we study properties of the dilation of truncated Toeplitz operators on \(L^{2}\). In particular, we provide conditions for the dilation of truncated Toeplitz operators to be normal. As some applications, we give several examples of such operators.
  相似文献   

9.
In this paper, we show that for a positive operator A on a Hilbert \(C^*\)-module \( \mathscr {E} \), the range \( \mathscr {R}(A) \) of A is closed if and only if \( \mathscr {R}(A^\alpha ) \) is closed for all \(\alpha \in (0,1)\cup (1,+\,\infty )\), and this occurs if and only if \( \mathscr {R}(A)=\mathscr {R}(A^\alpha ) \) for all \(\alpha \in (0,1)\cup (1,+\,\infty )\). As an application, we prove that for an adjontable operator A if \(\mathscr {R}(A)\) is nonclosed, then \(\dim \left( \overline{\mathscr {R}(A)}/\mathscr {R}(A)\right) =+\,\infty \). Finally, we show that for an adjointable operator A if \( \overline{\mathscr {R}(A^*) } \) is orthogonally complemented in \( \mathscr {E} \), then under certain coditions there exists an idempotent C and a unique operator X such that \( XAX=X, AXA=CA, AX=C \) and \( XA=P_{A^*} \), where \( P_{A^*} \) is the orthogonal projection of \( \mathscr {E} \) onto \( \overline{\mathscr {R}(A^*)}\).  相似文献   

10.
In this paper we study the difference between the 2-adic valuations of the cardinalities \( \# E( \mathbb {F}_{q^k} ) \) and \( \# E( \mathbb {F}_q ) \) of an elliptic curve E over \( \mathbb {F}_q \). We also deduce information about the structure of the 2-Sylow subgroup \( E[ 2^\infty ]( \mathbb {F}_{q^k} ) \) from the exponents of \( E[ 2^\infty ]( \mathbb {F}_q ) \).  相似文献   

11.
In 1987 Harris proved (Proc Am Math Soc 101(4):637–643, 1987)—among others—that for each \(1\le p<2\) there exists a two-dimensional function \(f\in L^p\) such that its triangular Walsh–Fourier series diverges almost everywhere. In this paper we investigate the Fejér (or (C, 1)) means of the triangle two variable Walsh–Fourier series of \(L^1\) functions. Namely, we prove the a.e. convergence \(\sigma _n^{\bigtriangleup }f = \frac{1}{n}\sum _{k=0}^{n-1}S_{k, n-k}f\rightarrow f\) (\(n\rightarrow \infty \)) for each integrable two-variable function f.  相似文献   

12.
A sufficient condition for a set \(\Omega \subset L^{1}\left( \left[ 0,1\right] ^{m}\right) \) to be invariant K-minimal with respect to the couple \(\left( L^{1}\left( \left[ 0,1\right] ^{m}\right) ,L^{\infty }\left( \left[ 0,1\right] ^{m}\right) \right) \) is established. Through this condition, different examples of invariant K-minimal sets are constructed. In particular, it is shown that the \(L^{1}\)-closure of the image of the \(L^{\infty }\)-ball of smooth vector fields with support in \(\left( 0,1\right) ^{m}\) under the divergence operator is an invariant K-minimal set. The constructed examples have finite-dimensional analogues in terms of invariant K-minimal sets with respect to the couple \(\left( \ell ^{1},\ell ^{\infty }\right) \) on \(\mathbb {R}^{n}\). These finite-dimensional analogues are interesting in themselves and connected to applications where the element with minimal K-functional is important. We provide a convergent algorithm for computing the element with minimal K-functional in these and other finite-dimensional invariant K-minimal sets.  相似文献   

13.
Let p be an odd prime number and \(\ell \) an odd prime number dividing \(p-1\). We denote by \(F=F_{p,\ell }\) the real abelian field of conductor p and degree \(\ell \), and by \(h_F\) the class number of F. For a prime number \(r \ne p,\,\ell \), let \(F_{\infty }\) be the cyclotomic \(\mathbb {Z}_r\)-extension over F, and \(M_{\infty }/F_{\infty }\) the maximal pro-r abelian extension unramified outside r. We prove that \(M_{\infty }\) coincides with \(F_{\infty }\) and consequently \(h_F\) is not divisible by r when r is a primitive root modulo \(\ell \) and r is smaller than an explicit constant depending on p.  相似文献   

14.
We extended the known result that symbols from modulation spaces \(M^{\infty ,1}(\mathbb {R}^{2n})\), also known as the Sjöstrand’s class, produce bounded operators in \(L^2(\mathbb {R}^n)\), to general \(L^p\) boundedness at the cost of loss of derivatives. Indeed, we showed that pseudo-differential operators acting from \(L^p\)-Sobolev spaces \(L^p_s(\mathbb {R}^n)\) to \(L^p(\mathbb {R}^n)\) spaces with symbols from the modulation space \(M^{\infty ,1}(\mathbb {R}^{2n})\) are bounded, whenever \(s\ge n|1/p-1/2|.\) This estimate is sharp for all \(1< p<\infty \).  相似文献   

15.
Let K be a compact set in \( {{\mathbb R}^n} \). For \( 1 \leqslant p \leqslant \infty \), the Bernstein space \( B_K^p \) is the Banach space of all functions \( f \in {L^p}\left( {{{\mathbb R}^n}} \right) \)such that their Fourier transform in a distributional sense is supported on K. If \( f \in B_K^p \), then f is continuous on \( {{\mathbb R}^n} \) and has an extension onto the complex space \( {{\mathbb C}^n} \) to an entire function of exponential type K. We study the approximation of functions in \( B_K^p \) by finite τ -periodic exponential sums of the form
$ \sum\limits_m {{c_m}{e^{2\pi {\text{i}}\left( {x,m} \right)/\tau }}} $
in the \( {L^p}\left( {\tau {{\left[ { - 1/2,1/2} \right]}^n}} \right) \)-norm as τ → ∞ when K is a polytope in \( {{\mathbb R}^n} \).
  相似文献   

16.
We consider the Anderson polymer partition function
$$\begin{aligned} u(t):=\mathbb {E}^X\left[ e^{\int _0^t \mathrm {d}B^{X(s)}_s}\right] \,, \end{aligned}$$
where \(\{B^{x}_t\,;\, t\ge 0\}_{x\in \mathbb {Z}^d}\) is a family of independent fractional Brownian motions all with Hurst parameter \(H\in (0,1)\), and \(\{X(t)\}_{t\in \mathbb {R}^{\ge 0}}\) is a continuous-time simple symmetric random walk on \(\mathbb {Z}^d\) with jump rate \(\kappa \) and started from the origin. \(\mathbb {E}^X\) is the expectation with respect to this random walk. We prove that when \(H\le 1/2\), the function u(t) almost surely grows asymptotically like \(e^{\lambda t}\), where \(\lambda >0\) is a deterministic number. More precisely, we show that as t approaches \(+\infty \), the expression \(\{\frac{1}{t}\log u(t)\}_{t\in \mathbb {R}^{>0}}\) converges both almost surely and in the \(\hbox {L}^1\) sense to some positive deterministic number \(\lambda \). For \(H>1/2\), we first show that \(\lim _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) exists both almost surely and in the \(\hbox {L}^1\) sense and equals a strictly positive deterministic number (possibly \(+\infty \)); hence, almost surely u(t) grows asymptotically at least like \(e^{\alpha t}\) for some deterministic constant \(\alpha >0\). On the other hand, we also show that almost surely and in the \(\hbox {L}^1\) sense, \(\limsup _{t\rightarrow \infty } \frac{1}{t\sqrt{\log t}}\log u(t)\) is a deterministic finite real number (possibly zero), hence proving that almost surely u(t) grows asymptotically at most like \(e^{\beta t\sqrt{\log t}}\) for some deterministic positive constant \(\beta \). Finally, for \(H>1/2\) when \(\mathbb {Z}^d\) is replaced by a circle endowed with a Hölder continuous covariance function, we show that \(\limsup _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) is a deterministic finite positive real number, hence proving that almost surely u(t) grows asymptotically at most like \(e^{c t}\) for some deterministic positive constant c.
  相似文献   

17.
Let F be an \(L^2\)-normalized Hecke Maaß cusp form for \(\Gamma _0(N) \subseteq {\mathrm{SL}}_{n}({\mathbb {Z}})\) with Laplace eigenvalue \(\lambda _F\). If \(\Omega \) is a compact subset of \(\Gamma _0(N)\backslash {\mathrm{PGL}}_n/\mathrm{PO}_{n}\), we show the bound \(\Vert F|_{\Omega }\Vert _{\infty } \ll _{ \Omega } N^{\varepsilon } \lambda _F^{n(n-1)/8 - \delta }\) for some constant \(\delta = \delta _n> 0\) depending only on n.  相似文献   

18.
We consider the model space \(\mathbb {M}^{n}_{K}\) of constant curvature K and dimension \(n\ge 1\) (Euclidean space for \(K=0\), sphere for \(K>0\) and hyperbolic space for \(K<0\)), and we show that given a function \(\rho :[0,\infty )\rightarrow [0, \infty )\) with \(\rho (0)=\mathrm {dist}(x,y)\) there exists a coadapted coupling (X(t), Y(t)) of Brownian motions on \(\mathbb {M}^{n}_{K}\) starting at (xy) such that \(\rho (t)=\mathrm {dist}(X(t),Y(t))\) for every \(t\ge 0\) if and only if \(\rho \) is continuous and satisfies for almost every \(t\ge 0\) the differential inequality
$$\begin{aligned} -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) \le \rho '(t)\le -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) +\tfrac{2(n-1)\sqrt{K}}{\sin (\sqrt{K}\rho (t))}. \end{aligned}$$
In other words, we characterize all coadapted couplings of Brownian motions on the model space \(\mathbb {M}^{n}_{K}\) for which the distance between the processes is deterministic. In addition, the construction of the coupling is explicit for every choice of \(\rho \) satisfying the above hypotheses.
  相似文献   

19.
Let \({\mathcal B}_{p,w}\) be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space \(L^p(\mathbb {R},w)\), where \(p\in (1,\infty )\) and w is a Muckenhoupt weight. We study the Banach subalgebra \(\mathfrak {A}_{p,w}\) of \({\mathcal B}_{p,w}\) generated by all multiplication operators aI (\(a\in \mathrm{PSO}^\diamond \)) and all convolution operators \(W^0(b)\) (\(b\in \mathrm{PSO}_{p,w}^\diamond \)), where \(\mathrm{PSO}^\diamond \subset L^\infty (\mathbb {R})\) and \(\mathrm{PSO}_{p,w}^\diamond \subset M_{p,w}\) are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of \(\mathbb {R}\cup \{\infty \}\), and \(M_{p,w}\) is the Banach algebra of Fourier multipliers on \(L^p(\mathbb {R},w)\). For any Muckenhoupt weight w, we study the Fredholmness in the Banach algebra \({\mathcal Z}_{p,w}\subset \mathfrak {A}_{p,w}\) generated by the operators \(aW^0(b)\) with slowly oscillating data \(a\in \mathrm{SO}^\diamond \) and \(b\in \mathrm{SO}^\diamond _{p,w}\). Then, under some condition on the weight w, we complete constructing a Fredholm symbol calculus for the Banach algebra \(\mathfrak {A}_{p,w}\) in comparison with Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 74:377–415, 2012) and Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 75:49–86, 2013) and establish a Fredholm criterion for the operators \(A\in \mathfrak {A}_{p,w}\) in terms of their symbols. A new approach to determine local spectra is found.  相似文献   

20.
We consider the problem
$$\begin{aligned} -\Delta u+\left( V_{\infty }+V(x)\right) u=|u|^{p-2}u,\quad u\in H_{0} ^{1}(\Omega ), \end{aligned}$$
where \(\Omega \) is either \(\mathbb {R}^{N}\) or a smooth domain in \(\mathbb {R} ^{N}\) with unbounded boundary, \(N\ge 3,\) \(V_{\infty }>0,\) \(V\in \mathcal {C} ^{0}(\mathbb {R}^{N}),\) \(\inf _{\mathbb {R}^{N}}V>-V_{\infty }\) and \(2<p<\frac{2N}{N-2}\). We assume V is periodic in the first m variables, and decays exponentially to zero in the remaining ones. We also assume that \(\Omega \) is periodic in the first m variables and has bounded complement in the other ones. Then, assuming that \(\Omega \) and V are invariant under some suitable group of symmetries on the last \(N-m\) coordinates of \(\mathbb {R}^{N}\), we establish existence and multiplicity of sign-changing solutions to this problem. We show that, under suitable assumptions, there is a combined effect of the number of periodic variables and the symmetries of the domain on the number of sign-changing solutions to this problem. This number is at least \(m+1\)
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号