首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Being motivated by the problem of deducing \(\mathsf {L}^{p}\)-bounds on the second fundamental form of an isometric immersion from \(\mathsf {L}^{p}\)-bounds on its mean curvature vector field, we prove a nonlinear Calderón–Zygmund inequality for maps between complete (possibly noncompact) Riemannian manifolds.  相似文献   

5.
6.
We study the boundedness of Calderón–Zygmund operators on weighted Hardy spaces $H^p_w$ using Littlewood-Paley theory. It is shown that if a Calderón–Zygmund operator T satisfies T *1?=?0, then T is bounded on $H^p_w$ for $w\in A_{p(1+\frac\varepsilon n)}$ and $\frac n{n+\varepsilon}<p\le1$ , where ε is the regular exponent of the kernel of T.  相似文献   

7.
We study several fundamental operators in harmonic analysis related to Bessel operators, including maximal operators related to heat and Poisson semigroups, Littlewood–Paley–Stein square functions, multipliers of Laplace transform type and Riesz transforms. We show that these are (vector-valued) Calderón–Zygmund operators in the sense of the associated space of homogeneous type, and hence their mapping properties follow from the general theory.  相似文献   

8.
9.
We establish a global Calderón–Zygmund theory for solutions to a large class of nonlinear parabolic systems whose model is the inhomogeneous parabolic \(p\) -Laplacian system $$\begin{aligned} \left\{ \begin{array}{ll} \partial _t u - {{\mathrm{div}}}(|Du|^{p-2}Du) = {{\mathrm{div}}}(|F|^{p-2}F) &{}\quad \hbox {in }\quad \Omega _T:=\Omega \times (0,T)\\ u=g &{}\quad \hbox {on }\quad \partial \Omega \times (0,T)\cup {\overline{\Omega }}\times \{0\} \end{array} \right. \end{aligned}$$ with given functions \(F\) and \(g\) . Our main result states that the spatial gradient of the solution is as integrable as the data \(F\) and \(g\) up to the lateral boundary of \(\Omega _T\) , i.e. $$\begin{aligned} F,Dg\in L^q(\Omega _T),\ \partial _t g\in L^{\frac{q(n+2)}{p(n+2)-n}}(\Omega _T) \quad \Rightarrow \quad Du\in L^q(\Omega \times (\delta ,T)) \end{aligned}$$ for any \(q>p\) and \(\delta \in (0,T)\) , together with quantitative estimates. This result is proved in a much more general setting, i.e. for asymptotically regular parabolic systems.  相似文献   

10.
11.
12.
13.
Journal of Fourier Analysis and Applications - The purpose of this article is to provide an alternative proof of the weak-type $$\left( 1,\ldots ,1;\frac{1}{m}\right) $$ estimate for m-multilinear...  相似文献   

14.
The aim of this paper is to establish the boundedness of certain sublinear operators with rough kernel generated by Calderón–Zygmund operators and their commutators on generalized Morrey spaces under generic size conditions which are satisfied by most of the operators in harmonic analysis. The Marcinkiewicz operator which satisfies the conditions of these theorems can be considered as an example.  相似文献   

15.
We investigate the weighted bounds for multilinear maximal functions and Calderón–Zygmund operators from \(L^{p_1}(w_1)\times \cdots \times L^{p_m}(w_m)\) to \(L^{p}(v_{\vec {w}})\), where \(1<p_1,\cdots ,p_m<\infty \) with \(1/{p_1}+\cdots +1/{p_m}=1/p\) and \(\vec {w}\) is a multiple \(A_{\vec {P}}\) weight. We prove the sharp bound for the multilinear maximal function for all such \(p_1,\ldots , p_m\) and prove the sharp bound for \(m\)-linear Calderón–Zymund operators when \(p\ge 1\).  相似文献   

16.
We find conditions for the weighted boundedness of a general class of multidimensional singular integral operators in generalized Morrey spaces \(\mathcal {L}^{p,\varphi }(\mathbb {R}^n,w),\) defined by a function \(\varphi (x,r)\) and radial type weight \(w(|x-x_0|), x_0\in {\mathbb {R}}^{n}.\) These conditions are given in terms of inclusion into \(\mathcal {L}^{p,\varphi }(\mathbb {R}^n,w),\) of a certain integral constructions defined by \(\varphi \) and w. In the case of \(\varphi =\varphi (r)\) we also provide easy to check sufficient conditions for that in terms of indices of \(\varphi \) and w.  相似文献   

17.
For vector-valued solutions of parabolic systems $\partial_tu-{\rm div}\, a(x,t,Du)={\rm div}\left(|F|^{p-2}F\right)$ with polynomial growth of rate ${p\in\Big(\frac{2n}{n+2},2\Big)}For vector-valued solutions of parabolic systems
?tu-div a(x,t,Du)=div(|F|p-2F)\partial_tu-{\rm div}\, a(x,t,Du)={\rm div}\left(|F|^{p-2}F\right)  相似文献   

18.
19.
In this paper, we study the boundedness of the multilinear Calderón–Zygmund operators on products of Hardy spaces.  相似文献   

20.
In this paper,the authors establish the boundedness of commutators generated by strongly singular Calderón–Zygmund operators and weighted BMO functions on weighted Herz-type Hardy spaces.Moreover,the corresponding results for commutators generated by strongly singular Calderón–Zygmund operators and weighted Lipschitz functions can also be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号