首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical studies are performed of planar cavity–polariton systems under resonant optical excitation. We show that if the cavity is spatially anisotropic, the polariton spin is highly sensitive to the pump polarization direction, which can be used to modulate the circular polarization of the output light. In particular, when the right- and left-circular components of the incident wave have equal intensities and mutually opposite angular momenta, the pump has strictly linear yet angle-dependent polarization and as such brings about a periodic angular variation of the polariton spin. Free motion of polaritons is the other factor determining the shape of the cavity-field distribution. Such externally driven and highly tunable spin patterns represent a counterpart of spin shaping in nonresonantly excited Bose–Einstein condensates of cavity polaritons.  相似文献   

2.
New effects of self-organization and polarization pattern formation in semiconductor microcavities, operating in the nonlinear regime, are predicted and theoretically analyzed. We show that a spatially inhomogeneous elliptically polarized optical cw pump leads to the formation of a strongly circularly polarized ring in real space. This effect is due to the polarization multistability of cavity polaritons which was recently predicted. The possible switching between different stable configurations allows the realization of a localized spin memory element, suitable for an optical data storage device.  相似文献   

3.
Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied. By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comes about in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dot levels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in this structure by the presence of an appropriate magnetic flux. However,in absence of magnetic flux spin polarization and spin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state.  相似文献   

4.
There are many important works about the construction of universal quantum logic gates which are key elements in quantum computation. However, most of them focus on quantum transformations on the same degree of freedom (DOF) of quantum systems. We propose a CNOT gate performed on the polarization DOF and spatial mode DOF of one photon system assisted by a quantum dot in double-side optical microcavities. This hyper CNOT gate is implemented by using spin selective photon reflection from the cavity, without auxiliary spatial modes or polarization modes. This interface can also be used to construct a hyper photonic Bell-state analyzer. The high fidelities of the hyper CNOT gates may be achieved with low side leakage and cavity loss.  相似文献   

5.
Out-of-plane spin and charge responses to the terahertz field for a clean two-dimensional electron gas with a Rashba spin-orbit interaction in the presence of an in-plane magnetic field are studied. We show that the characteristic optical spectral behavior is remarkably different from that of the system in the absence of in-plane magnetic fields. It is found that the optical spin polarization normal to the plane is nonzero even for this clean system, in sharp contrast to the static case. Due to the combined effect of spin-orbit coupling and in-plane magnetic field, both diagonal and off-diagonal components of optical charge conductivity tensor are nonvanishing. It is indicated that one can control the spin polarization and the optical current by adjusting the optical frequency. In addition, the out-of-plane spin polarization and conductivities strongly rely on the direction of the external magnetic field. Nevertheless, they meet different angle-dependent relations. This dynamical out-of-plane spin polarization could be measured by the time-resolved Kerr rotation technique.  相似文献   

6.
本文开展了光学腔内两正交偏振模振幅和相位补偿的实验研究。通过采用特殊腔型和两个λ/2波片,补偿腔内反射镜对水平偏振模和垂直偏振模的反射率差异,使两个偏振模的输出振幅相等。利用一组λ/4-λ/2-λ/4波片补偿光学腔内水平偏振模和垂直偏振模的相位差,使两个模的输出重合。通过上述的振幅和相位补偿方法,可实现任意偏振光经过环形腔后偏振不变,为任意偏振比特在腔内冷原子系综中的高效率高保真度存储提供了实验基础。  相似文献   

7.
We report the implementation of projective measurement on a single 1/2 nuclear spin of the (171)Yb atom by measuring the polarization of cavity-enhanced fluorescence. To obtain cavity-enhanced fluorescence having a nuclear-spin-dependent polarization, we construct a two-mode cavity QED system, in which two cyclic transitions are independently coupled to each of the orthogonally polarized cavity modes, by manipulating the energy level of (171)Yb. This system can associate the nuclear spin degrees of freedom with the polarization of photons, which will facilitate the development of hybrid quantum systems.  相似文献   

8.
黄于  周沛  杨一功  李念强  李孝峰 《强激光与粒子束》2021,33(11):111006-1-111006-14
在半导体激光器中引入自旋极化载流子是实现室温自旋电子应用的新途径,其超越了常规的磁阻效应。自旋极化载流子的注入导致自旋激光器具有丰富的动力学行为并展示出包括高频偏振振荡和偏振混沌动力学等特性,使其在保密光通信、量子计算、光信息处理和数据存储、可重构光互联以及生物医学传感等领域具有巨大的应用潜力。梳理了近年来自旋激光器的动力学特性及其应用研究进展。介绍了自旋激光器丰富的动力学行为及混沌演变机制;随后分析了自旋激光器的高频振荡特性;归纳了基于自旋激光器动力学特性的最新应用研究进展。在此基础上,展望了自旋激光器的发展趋势和面临的挑战,为相关领域的研究和工程应用提供参考。  相似文献   

9.
The vectorial structure of an optical field with hybrid states of polarization(So P) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial So P of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions.  相似文献   

10.
The current-induced optical activity in a tellurium single crystal has been experimentally investigated in the mid-infrared spectral region. The phenomenological theory of the current-induced optical activity has been considered and the microscopic mechanism of this phenomenon has been described. The dependence of the degree of spin polarization of holes in tellurium on the electric current density has been determined. An approximate analytical expression relating the current-induced optical activity to the degree of spin polarization of holes has been obtained.  相似文献   

11.
In an interferometric pump-probe experiment, we demonstrate the phase tuning of the spin polarization of photoelectrons emitted in a three-photon process from Cu(001). A phase shift of pi between delayed ultrafast circularly polarized light pulses can switch the spin polarization from +/-20% to -/+40%. In the delay regime of overlapping pulses, we show the dominating role of optical interference effects in determining the spin polarization. For longer delays, we detect the influence of the coherent material response, manifested in both the final state electron population as well as the final state spin polarization.  相似文献   

12.
Polarized 3He has shown its unique characteristics in many areas of polarized neutron scattering, its ability to polarize neutrons at short wavelengths, accept wide-angle and divergent beams and low backgrounds enable new classes of experiments. While polarized 3He is not a steady state solution as commonly applied, the benefits have been shown to offset the drawbacks of polarizing and refreshing the polarization in the neutron spin filter cells. As an extension of this work, in-situ polarization using the spin-exchange optical pumping (SEOP) method was explored as a means to construct a system which could be used to polarize 3He in the state used for an effective neutron spin filter to constant polarization while on the neutron beam. An in-situ SEOP polarizer was constructed. This device utilized many devices and principles developed for neutron spin filters which are polarized off the beam line using either SEOP or metastability exchange optical pumping (MEOP) under the same research program. As a collimation of this work effects of extremely high neutron capture flux density incident on the in-situ polarizer were explored.  相似文献   

13.
We predict theoretically the optical signatures of spin polarization of carriers in self-assembled quantum dots. The emission spectra are mapped out as a function of increasing electron spin polarization for a fixed number of electrons and holes. The spin-polarized spectra are determined using exact diagonalization techniques for up to 12 particles, corresponding to two lowest filled shells. We predict that the spin polarization leads to photon polarization, to redshifts of emission lines due to excess exchange interactions among the spin-polarized electrons, and to a complete breakup of emission lines for spin-polarized electronic shells.  相似文献   

14.
A remarkable analogy is established between the well-known spin Hall effect and the polarization dependence of Rayleigh scattering of light in microcavities. This dependence results from the strong spin effect in elastic scattering of exciton polaritons: if the initial polariton state has a zero spin and is characterized by some linear polarization, the scattered polaritons become strongly spin polarized. The polarization in the scattered state can be positive or negative dependent on the orientation of the linear polarization of the initial state and on the direction of scattering. Very surprisingly, spin polarizations of the polaritons scattered clockwise and anticlockwise have different signs. The optical spin Hall effect is possible due to strong longitudinal-transverse splitting and finite lifetime of exciton polaritons in microcavities.  相似文献   

15.
We present a technique for manipulating the nuclear spins and the emission polarization from a single optically active quantum dot. When the quantum dot is tunnel coupled to a Fermi sea, we have discovered a natural cycle in which an electron spin is repeatedly created with resonant optical excitation. The spontaneous emission polarization and the nuclear spin polarization exhibit a bistability. For a σ(+) pump, the emission switches from σ(+) to σ(-) at a particular detuning of the laser. Simultaneously, the nuclear spin polarization switches from positive to negative. Away from the bistability, the nuclear spin polarization can be changed continuously from negative to positive, allowing precise control via the laser wavelength.  相似文献   

16.
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.  相似文献   

17.
This work presents an overview of investigations of the nuclear spin dynamics in nanostructures with negatively charged InGaAs/GaAs quantum dots characterized by strong quadrupole splitting of nuclear spin sublevels. The main method of the investigations is the experimental measurements and the theoretical analysis of the photoluminescence polarization as a function of the transverse magnetic field (effect Hanle). The dependence of the Hanle curve profile on the temporal protocol of optical excitation is examined. Experimental data are analyzed using an original approach based on separate consideration of behavior of the longitudinal and transverse components of the nuclear polarization. The rise and decay times of each component of the nuclear polarization and their dependence on transverse magnetic field strength are determined. To study the role of the Knight field in the dynamic of nuclear polarization, a weak additional magnetic field parallel to the optical axis is used. We have found that, only taking into account the nuclear spin fluctuations, we can accurately describe the measured Hanle curves and evaluate the parameters of the electron–nuclear spin system in the studied quantum dots. A new effect of the resonant optical pumping of nuclear spin polarization in an ensemble of the singly charged (In,Ga)As/GaAs quantum dots subjected to a transverse magnetic field is discussed. Nuclear spin resonances for all isotopes in the quantum dots are detected in that way. In particular, transitions between the states split off from the ±1/2 doublets by the nuclear quadrupole interaction are identified.  相似文献   

18.
张晓旭  张胜海  吴天安  孙巍阳 《物理学报》2016,65(21):214206-214206
基于自旋反转模型,研究了1550 nm垂直腔面发射激光器(1550 nm-VCSELs)在偏振保持光反馈和正交光注入下的偏振转换特性.结果表明:正交光注入下的从激光器会随着注入强度的增加产生偏振转换.在归一化注入电流较小时,改变反馈强度,会使从激光器发生偏振转换的注入强度出现规律不同的变化;改变频率失谐,会使从激光器发生偏振转换的注入强度出现规律相同的变化.  相似文献   

19.
A spin-polarized vertical-cavity surface-emitting laser is demonstrated with electrical spin injection from an Fe/Al0.1Ga0.9As Schottky tunnel barrier. Laser operation with a spin-polarized current results in a maximum threshold current reduction of 11% and degree of circular polarization of 23% at 50 K. A cavity spin polarization of 16.8% is estimated from spin-dependent rate equation analysis of the observed threshold reduction.  相似文献   

20.
王志勇  胡慧芳  顾林  王巍  贾金凤 《物理学报》2011,60(1):17102-017102
本文采用基于密度泛函理论的第一性原理对zigzag型石墨烯纳米带中含有不同Stone-Wales缺陷的电子结构特性和光学性能进行研究. 考虑了两种模型:不计电子自旋和考虑电子自旋的情况.研究发现:不计电子自旋情况下,含对称Stone-Wales缺陷的石墨烯纳米带在缺陷区域出现了凹凸不平的折皱构型,两种不同的Stone-Wales缺陷都引起了电荷的重新分布.考虑电子自旋时,Stone-Wales缺陷的引入对石墨烯纳米带自旋密度有显著影响,也引起了不同自旋的电子态密度的变化.进一步研究了纳米带的光学性能,发现 关键词: 石墨烯纳米带 Stone-Wales缺陷 电子结构 光学性能  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号