首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了一种分离的导模共振滤波器.该结构由光栅层和两个被空气薄层隔开的平板介质波导组成.使用时域有限差分法分析了该光栅结构在不同的结构参数下的光谱特性.研究表明,当TM偏振入射时改变空气薄层的厚度可以实现共振波长的可调谐,并且共振波长几乎随着空气薄层厚度线性变化.浅调制光栅被用于实现窄线宽特性.波长可调谐范围为1 515~1 558nm,半高全宽小于0.6nm.  相似文献   

2.
We propose an all-optical switching scheme based on Raman gain in a silicon nanowaveguide suitable for multichannel optical communication. Raman gain is used for amplification of a control pulse with a higher wavelength, which depletes the tuned channel signal. Separation between control and signal pulses should be equal to the Raman shift in silicon. By employing a 3 mm channel nanowaveguide, we demonstrate a channel attenuation of about 12 dB, while the suppression ratios for the first and second neighboring channels are about 1.6 dB and 1 dB, respectively. This scheme can be used as an all-optical switch in dense wavelength division multiplexing networks. Moreover, we demonstrate that the depleted channel can be retrieved by a control pulse with lower wavelength in which the pulse amplifies the channel in contrast to the prior situation.  相似文献   

3.
The resonance wavelength of the fiber Bragg gratings (FBGs) is tuned using two methods. Tunable FBGs are used as the selecting elements in the cavities of tunable lasers. An ytterbium-doped fiber laser with a wavelength tuning range of 1063–1108 nm and an output power of 6 W, a Raman fiber laser with a wavelength tuning range of 1252–1303 nm and an output power of 3 W, and an erbium-doped fiber laser with a wavelength tuning range of 1530–1580 nm are realized, and their characteristics are studied.  相似文献   

4.
Narrow photoluminescence peaks with a full-width at half-maximum of 14–20 nm are obtained from porous silicon microcavities (PSM) fabricated by the electrochemical etching of a Si multilayer grown by molecular beam epitaxy. The microcavity structure contains an active porous silicon layer sandwiched between two distributed porous silicon Bragg reflectors; the latter were fabricated by etching a Si multilayer doped alternatively with high and low boron concentrations. The structural and optical properties of the PSMs are characterised by scanning electron microscopy and photoluminescence (PL). The wavelength of the narrow PL peaks could be tuned in the range of 700–810 nm by altering the optical constants.  相似文献   

5.
带虚设层的抗反射结构导模共振滤波器设计与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
桑田  蔡托  刘芳  蔡绍洪  张大伟 《物理学报》2013,62(2):24215-024215
提出带虚设层的抗反射导模共振滤波器结构及设计方法,该方法适用于任意角度入射带虚设层的抗反射结构导模共振滤波器设计与分析.得到带虚设层的导模共振滤波器抗反射结构所满足的关系式.指出在维持虚设层光学厚度不变的情况下,可以通过不同选材,在低反射旁带中实现等带宽不同波长的选择.此外,由于结构的抗反射特性在低角范围内具有较大的角度容差,改变入射角,可以实现滤波波长及光谱带宽在宽光谱范围内的准线性可调谐.  相似文献   

6.
Metallic bowtie antennas are used in nanophotonics applications in order to confine the electromagnetic field into volumes much smaller than that of the incident wavelength. Electrically controllable carrier concentration of graphene opens the door to the use of plasmonic nanoantenna structures with graphene so that the resonant nature of nanoantennas can be tuned. In this study, we demonstrated with the Fourier transform infrared (FTIR) spectroscopy and the Finite Difference Time Domain (FDTD) method that the intensity and resonance peak of bowtie nanoantennas on monolayer graphene can be tuned at mid-infrared (MIR) wavelength regime by applying a gate voltage, since the optical properties of graphene change by changing the carrier concentration.  相似文献   

7.
Local field surface plasmon excitation of pair arrays of silver nanospheres was studied using three-dimensional finite-difference time-domain method. The near-field enhancement was associated with the radius of nanosphere and the incident wavelength, the highest of which always appeared in the penultimate gaps, regardless of the number of the pairs. The surface plasmon resonance could be controlled and tuned by radius of nanosphere and incident wavelength.  相似文献   

8.
We propose a design and numerical study of an optically blueshift and redshift switchable metamaterial(MM)absorber in the terahertz regime. The MM absorber comprises a periodic array of metallic split-ring resonators(SRRs) with semiconductor silicon embedded in the gaps of MM resonators. The absorptive frequencies of the MM can be shifted by applying an external pump power. The simulation results show that, for photoconductivity of silicon ranging between 1 S/m and 4000 S/m, the resonance peak of the absorption spectra shifts to higher frequencies, from 0.67 THz to 1.63 THz, with a resonance tuning range of 59%. As the conductivity of silicon increases, the resonance frequencies of the MM absorber are continuously tuned from 1.60 THz to 1.16 THz, a redshift tuning range of 28%. As the conductivity increases above 30000 S/m, the resonance frequencies tend to be stable while the absorption peak has a merely tiny variation. The optical-tuned absorber has potential applications as a terahertz modulator or switch.  相似文献   

9.
Octave-spanning frequency comb generation in a silicon nitride chip   总被引:1,自引:0,他引:1  
Okawachi Y  Saha K  Levy JS  Wen YH  Lipson M  Gaeta AL 《Optics letters》2011,36(17):3398-3400
We demonstrate a frequency comb spanning an octave via the parametric process of cascaded four-wave mixing in a monolithic, high-Q silicon nitride microring resonator. The comb is generated from a single-frequency pump laser at 1562?nm and spans 128?THz with a spacing of 226?GHz, which can be tuned slightly with the pump power. In addition, we investigate the RF amplitude noise characteristics of the parametric comb and find that the comb can operate in a low-noise state with a 30?dB reduction in noise as the pump frequency is tuned into the cavity resonance.  相似文献   

10.
Simulating the characteristics of a guided-mode resonance filter with rigorous coupled wave analysis, we find that, by adjusting the azimuthal angle of the grating used as a sub-layer of the guided-mode resonance filter from 0° to 90° under TE-reflectance, the intensity of the spectral reflectance of the guided-mode resonance filter monotonically increases at the wavelength of 684.6 nm, while the spectral reflectance monotonically decreases at the wavelength of 723 nm. Moreover, the spectral reflectance with TE-reflectance at 90° corresponds to the TM-reflectance at 0°. The phenomenon means that the intensity of the spectral reflectance can be easily tuned with different azimuthal angles by choosing appropriate structure parameters of the guided-mode resonance filter.  相似文献   

11.
To improve the internal quantum efficiency of silicon nanocrystals, a double layer structure with Au-rich cermet is proposed. In the region far below surface plasmon resonance energy, effective enhancement can be still obtained, which indicates means to make surface plasmon mediated enhancement efficient in a wide wavelength region especially for long wavelength.  相似文献   

12.
Zhu L  Derose GA  Scherer A  Yariv A 《Optics letters》2007,32(10):1256-1258
We demonstrate electrically pumped large-area edge-emitting InGaAsP/InP two-dimensional photonic crystal lasers with angled facets at room temperature. The laser uses a weak index perturbation surface photonic crystal structure to control optical modes in the wafer plane. Measurements of the laser spectra show that the modal selection is due to satisfying the Bragg resonance conditions in both the longitudinal and the transverse directions. The lasing wavelength is tuned lithographically by changing photonic crystal lattice constants. We demonstrate a fine lasing wavelength tuning sensitivity (change of lasing wavelength over change of lattice constant) of 0.08 through the transverse lattice constant tuning.  相似文献   

13.
杜颖  李曙光  刘硕 《中国物理 B》2012,21(9):94219-094219
Filter characteristics of a designed gold-filled high birefringence photonic crystal fiber are investigated based on the finite element method. The wavelength filter resonances in the high birefringence photonic crystal fiber occur at different points for different polarized directions, and the resonance strength in the x-polarized case is much weaker than that in the y-polarized case. The much more obvious splitting filter characteristics and different resonance strength imply the study and application values in splitting and single polarization fiber devices. The simulation results show that increasing the number of the gold wires only enhances the resonance strength when there is no surface plasmon supermode formed. With the diameters of the gold wires increasing, the response wavelength moves to a longer wavelength, and the strength becomes stronger. When the diameter is increased to 1.4 μm, the response wavelength in the x-polarized case can be tuned to 1.318 μm, which is the communication wavelength. The strongest resonance occurs at 1.2375 μm in the y-polarized case, and the peaking loss can reach 435.83 dB/cm.  相似文献   

14.
Authentication labels based on guided-mode resonant filters   总被引:2,自引:0,他引:2  
Wu ML  Hsu CL  Lan HC  Huang HI  Liu YC  Tu ZR  Lee CC  Lin JS  Su CC  Chang JY 《Optics letters》2007,32(12):1614-1616
A guided-mode resonance (GMR) filter with wide angular tolerances is experimentally demonstrated as an authentication label illuminated with unpolarized white light. The proposed filter, based on a free-standing silicon nitride membrane suspended on a silicon substrate, is fabricated by using anisotropic wet etching to remove the substrate beneath the silicon nitride layer. Both grating and waveguide structures without a lower cladding layer, i.e., a substrate, are fabricated simultaneously on a silicon nitride membrane. Since the silicon nitride is transparent within the spectra of visible and infrared light, such suspended-membrane-type GMR filters are well suited for applications within the visible spectrum. Moreover, the high refractive index of silicon nitride allows the proposed filters to have strongly modulated gratings and an immunity to high angular deviation. The measured reflection resonance has an angular tolerance up to +/-5 degrees under normal incidence for the wavelength of 629.5 nm.  相似文献   

15.
Zhou L  Poon AW 《Optics letters》2007,32(7):781-783
We report a Fano resonance-based electrically reconfigurable add-drop filter using a microring resonator-coupled Mach-Zehnder interferometer (MZI) on a silicon substrate. Our experiments reveal a pair of complementary Fano resonance line shapes that can be electrically tuned and output coupled from the MZI output ports. A near symmetrical resonance peak can be flipped to a near symmetrical resonance dip by applying a forward-bias voltage of less than 1V across a laterally integrated p-i-n diode in the MZI non-resonator-coupled arm. Our scattering-matrix-based modeling shows good agreement with the experiments and indicates ways to enhance the resonance routing functionality. Our work demonstrates the feasibility of an integrated reconfigurable add-drop filter with actively interchangeable throughput and drop ports.  相似文献   

16.
We present the experimental study of a free-standing metallic guided-mode resonant structure, for bandpass filtering applications in the mid-IR wavelength range. Structure consists of a subwavelength gold grating with narrow slits deposited on a silicon nitride membrane. High optical transmission is measured with up to 78% transmission at resonance. Angularly resolved spectra are presented revealing Fano-type resonance.  相似文献   

17.
设计了一种基于LiNbO_3的长周期波导光栅可调谐耦合器.该耦合器利用长周期光栅的独有特性将输入波导的导模经包层模耦合至输出波导导模.由于LiNbO_3的电光效应,波导光栅芯层与包层的有效折射率随外加电压变化,从而耦合器的谐振波长及耦合效率可由外加电压调谐.分析了光栅周期与耦合器的长度对耦合器带宽和耦合效率调谐范围的影响,以及波导尺寸对谐振波长调谐灵敏度的影响.结果表明光栅周期越短,耦合器长度越长,则耦合器的带宽越窄,耦合效率调谐范围也越大.此外,谐振波长调谐灵敏度随波导宽度的增加而减小,而波导厚度对谐振波长调谐灵敏度的影响可以忽略.对光栅周期为94μm、长度为3.52cm的耦合器进行仿真,结果表明,谐振波长灵敏度为26.2pm/V,3dB带宽可达4.5nm,当外加电压从0变化到200V时,谐振波长变化5.24nm,耦合效率可在1到0.15之间进行调谐.  相似文献   

18.
Dynamic thermal emission control has attracted growing interest in a broad range of fields, including radiative cooling, thermophotovoltaics and adaptive camouflage. Previous demonstrations of dynamic thermal emission control present disadvantages of either large thickness or requiring sustained electrical or thermal excitations. In this paper, an ultrathin (∼0.023λ, λ is the emission peak wavelength) metal‐insulator‐metal plasmonic metamaterial‐based zero‐static‐power mid‐infrared thermal emitter incorporating phase‐changing material GST is experimentally demonstrated to dynamically control the thermal emission. The electromagnetic modes can be continuously tuned through the intermediate phases determined by controlling the temperature. A typical resonance mode, which involves the coupling between the high‐order magnetic resonance and anti‐reflection resonance, shifts from 6.51 to 9.33 μm while GST is tuned from amorphous to crystalline phase. This demonstration will pave the way towards the dynamical thermal emission control in both the fundamental science field and a number of energy‐harvesting applications.  相似文献   

19.
Large area hydrogenated amorphous silicon p–i–n structures with low conductivity doped layers were proposed as single element monochrome image sensors. The investigation of the sensor output under different scanner wavelengths and varying electrical bias reveals that the response can be tuned to a certain wavelength, thus enabling color separation. The measurement technique is described in detail and two methods for color separation are proposed. The sensor output characteristics are evaluated under different bias voltages and wavelengths. The color separation mechanism can be explained by the variation of the band bending with light wavelength.The operation of the sensor is exemplified under illumination with a polychromatic image and using one of the proposed detection methods.  相似文献   

20.
We have successfully improved the reproducibility of tip‐enhancement effect on metallized silicon cantilever tips for characterization of carbon nanotubes. Plasmon resonance tuning relative to an excitation wavelength is crucial for efficient tip‐enhancement, which is accomplished by thermal oxidization and subsequent metallization of commercial silicon tips. Because of the change of the refractive index of the tip from silicon to silicon dioxide, the plasmon resonance of the silver‐coated tip is blue‐shifted showing an enormous enhancement at 532 nm excitation. Highly reproducible tips exhibit an enhancement factor of >100 with a 100% yield. Because the tips are fabricated from commercially available silicon cantilever tips in a simple and robust way, our approach provides an important step of ‘tip‐enhanced Raman spectroscopy for everyone’. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号