首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The hexagonal structure for ??the geometry of logical opposition??, as coming from Aristoteles?CApuleius square and Sesmat?CBlanché hexagon, is presented here in connection with, on the one hand, geometrical ideas on duality on triangles (construction of ??companion??), and on the other hand, constructions of tripartitions, emphasizing that these are exactly cases of borromean objects. Then a new case of a logical interest introduced here is the double magic tripartition determining the semi-ring ${\mathcal{B}_3}$ and this is a borromean object again, in the heart of the semi-ring ${{\rm Mat}_{3}(\mathbb{B}_{\rm Alg})}$ . With this example we understand better in which sense the borromean object is a deepening of the hexagon, in a logical vein. Then, and this is our main objective here, the Post-Mal??cev full iterative algebra ${\mathbb{P}_4 = \mathbb{P}(\mathbb{F}_4)}$ of functions of all arities on ${\mathbb{F}_4}$ , is proved to be a borromean object, generated by three copies of ${\mathbb{P}_2}$ in it. This fact is induced by a hexagonal structure of the field ${\mathbb{F}_4}$ . This hexagonal structure is seen as precisely a geometrical addition to standard boolean logic, exhibiting ${\mathbb{F}_4}$ as a ??boolean manifold??. This structure allows to analyze also ${\mathbb{P}_4}$ as generated by adding to a boolean set of logical functions a very special modality, namely the Frobenius squaring map in ${\mathbb{F}_4}$ . It is related to the splitting of paradoxes, to modified logic, to specular logic. It is a setting for a theory of paradoxical sentences, seen as computations of movements on the bi-hexagonal link among the 12 classical logics on a set of 4 values.  相似文献   

2.
In this paper, we show that the extended modular group ${\hat{\Gamma}}$ acts on ${\hat{\mathbb{Q}}}$ transitively and imprimitively. Then the number of orbits of ${\hat{\Gamma} _{0}(N)}$ on ${\hat{\mathbb{Q}}}$ is calculated and compared with the number of orbits of ${\Gamma _{0}(N)}$ on ${\hat{\mathbb{Q}}}$ . Especially, we obtain the graphs ${\hat{G}_{u, N}}$ of ${\hat{\Gamma}_{0}(N)}$ on ${\hat{\mathbb{Q}}}$ , for each ${N\in\mathbb{N}}$ and each unit ${u \in U_{N} }$ , then we determine the suborbital graph ${\hat{F}_{u,N}}$ . We also give the edge conditions in ${\hat{G}_{u, N}}$ and the necessary and sufficient conditions for a circuit to be triangle in ${\hat{F}_{u, N}.}$   相似文献   

3.
4.
In this paper we provide a first realization of an idea of Jacques Tits from a 1956 paper, which first mentioned that there should be a field of charactéristique une, which is now called ${\mathbb{F}_1}$ , the field with one element. This idea was that every split reductive group scheme over ${\mathbb{Z}}$ should descend to ${\mathbb{F}_1}$ , and its group of ${\mathbb{F}_1}$ -rational points should be its Weyl group. We connect the notion of a torified scheme to the notion of ${\mathbb{F}_1}$ -schemes as introduced by Connes and Consani. This yields models of toric varieties, Schubert varieties and split reductive group schemes as ${\mathbb{F}_1}$ -schemes. We endow the class of ${\mathbb{F}_1}$ -schemes with two classes of morphisms, one leading to a satisfying notion of ${\mathbb{F}_1}$ -rational points, the other leading to the notion of an algebraic group over ${\mathbb{F}_1}$ such that every split reductive group is defined as an algebraic group over ${\mathbb{F}_1}$ . Furthermore, we show that certain combinatorics that are expected from parabolic subgroups of GL(n) and Grassmann varieties are realized in this theory.  相似文献   

5.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

6.
Given a Lie group G with a bi-invariant metric and a compact Lie subgroup K, Bittencourt and Ripoll used the homogeneous structure of quotient spaces to define a Gauss map ${\mathcal{N}:M^{n}\rightarrow{\mathbb{S}}}$ on any hypersupersurface ${M^{n}\looparrowright G/K}$ , where ${{\mathbb{S}}}$ is the unit sphere of the Lie algebra of G. It is proved in Bittencourt and Ripoll (Pacific J Math 224:45–64, 2006) that M n having constant mean curvature (CMC) is equivalent to ${\mathcal{N}}$ being harmonic, a generalization of a Ruh–Vilms theorem for submanifolds in the Euclidean space. In particular, when n = 2, the induced quadratic differential ${\mathcal{Q}_{\mathcal{N}}:=(\mathcal{N}^{\ast}g)^{2,0}}$ is holomorphic on CMC surfaces of G/K. In this paper, we take ${G/K={\mathbb{S}}^{2}\times{\mathbb{R}}}$ and compare ${\mathcal{Q}_{\mathcal{N}}}$ with the Abresch–Rosenberg differential ${\mathcal{Q}}$ , also holomorphic for CMC surfaces. It is proved that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ , after showing that ${\mathcal{N}}$ is the twisted normal given by (1.5) herein. Then we define the twisted normal for surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ and prove that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ as well. Within the unified model for the two product spaces, we compute the tension field of ${\mathcal{N}}$ and extend to surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ the equivalence between the CMC property and the harmonicity of ${\mathcal{N}.}$   相似文献   

7.
We prove a new local inequality for divisors on surfaces and utilize it to compute α-invariants of singular del Pezzo surfaces, which implies that del Pezzo surfaces of degree one whose singular points are of type $\mathbb{A}_{1}$ , $\mathbb{A}_{2}$ , $\mathbb{A}_{3}$ , $\mathbb{A}_{4}$ , $\mathbb{A}_{5}$ , or $\mathbb{A}_{6}$ are Kähler-Einstein.  相似文献   

8.
We prove that for any open Riemann surface ${\mathcal{N}}$ , natural number N ≥ 3, non-constant harmonic map ${h:\mathcal{N} \to \mathbb{R}}$ N?2 and holomorphic 2-form ${\mathfrak{H}}$ on ${\mathcal{N}}$ , there exists a weakly complete harmonic map ${X=(X_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ with Hopf differential ${\mathfrak{H}}$ and ${(X_j)_{j=3,\ldots,{\sc N}}=h.}$ In particular, there exists a complete conformal minimal immersion ${Y=(Y_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ such that ${(Y_j)_{j=3,\ldots,{\sc N}}=h}$ . As some consequences of these results (1) there exist complete full non-decomposable minimal surfaces with arbitrary conformal structure and whose generalized Gauss map is non-degenerate and fails to intersect N hyperplanes of ${\mathbb{CP}^{{\sc N}-1}}$ in general position. (2) There exist complete non-proper embedded minimal surfaces in ${\mathbb{R}^{\sc N},}$ ${\forall\,{\sc N} >3 .}$   相似文献   

9.
We consider the standard first passage percolation model in the rescaled graph ${\mathbb{Z}^d/n}$ for d??? 2, and a domain ?? of boundary ?? in ${\mathbb{R}^d}$ . Let ??1 and ??2 be two disjoint open subsets of ??, representing the parts of ?? through which some water can enter and escape from ??. We investigate the asymptotic behaviour of the flow ${\phi_n}$ through a discrete version ?? n of ?? between the corresponding discrete sets ${\Gamma^{1}_{n}}$ and ${\Gamma^{2}_{n}}$ . We prove that under some conditions on the regularity of the domain and on the law of the capacity of the edges, the lower large deviations of ${\phi_n/ n^{d-1}}$ below a certain constant are of surface order.  相似文献   

10.
In this paper, the concepts of $\mathbb{E}_{\alpha}$ -Ulam-Hyers stability, generalized $\mathbb{E}_{\alpha}$ -Ulam-Hyers stability, $\mathbb{E}_{\alpha}$ -Ulam-Hyers-Rassias stability and generalized $\mathbb{E}_{\alpha}$ -Ulam-Hyers-Rassias stability for fractional order ordinary differential equations are raised. Without loss of generality, $\mathbb{E}_{\alpha}$ -Ulam-Hyers-Rassias stability result is derived by using a singular integral inequality of Gronwall type. Two examples are also provided to illustrate our results.  相似文献   

11.
Suppose that n is even. Let ${\mathbb{F}_2}$ denote the two-element field and ${\mathbb{Z}}$ the set of integers. Bent functions can be defined as ± 1-valued functions on ${\mathbb{F}_2^n}$ with ± 1-valued Fourier transform. More generally we call a mapping f on ${\mathbb{F}_2^n}$ a ${\mathbb{Z}}$ -bent function if both f and its Fourier transform ${\widehat{f}}$ are integer-valued. ${\mathbb{Z}}$ -bent functions f are separated into different levels, depending on the size of the maximal absolute value attained by f and ${\widehat{f}}$ . It is shown how ${\mathbb{Z}}$ -bent functions of lower level can be built up recursively by gluing together ${\mathbb{Z}}$ -bent functions of higher level. This recursion comes down at level zero, containing the usual bent functions. In the present paper we start to study bent functions in the framework of ${\mathbb{Z}}$ -bent functions and give some guidelines for further research.  相似文献   

12.
We consider the groups ${\mathrm{Diff }}_\mathcal{B }(\mathbb{R }^n)$ , ${\mathrm{Diff }}_{H^\infty }(\mathbb{R }^n)$ , and ${\mathrm{Diff }}_{\mathcal{S }}(\mathbb{R }^n)$ of smooth diffeomorphisms on $\mathbb{R }^n$ which differ from the identity by a function which is in either $\mathcal{B }$ (bounded in all derivatives), $H^\infty = \bigcap _{k\ge 0}H^k$ , or $\mathcal{S }$ (rapidly decreasing). We show that all these groups are smooth regular Lie groups.  相似文献   

13.
We investigate real local isometric immersions of Kähler manifolds ${\mathbb{C}Q^2_c}$ of constant holomorphic curvature 4c into complex projective 3-space. Our main result is that the standard embedding of ${\mathbb{C}P^2}$ into ${\mathbb{C}P^3}$ has strong rigidity under the class of local isometric transformations. We also prove that there are no local isometric immersions of ${\mathbb{C}Q^2_c}$ into ${\mathbb{C}P^3}$ when they have different holomorphic curvature. An important method used is a study of the relationship between the complex structure of any locally isometric immersed ${\mathbb{C}Q^2_c}$ and the complex structure of the ambient space ${\mathbb{C}P^3}$ .  相似文献   

14.
Let ${\mathcal{A}_{\lambda}^2(\mathbb{B}^n)}$ denote the standard weighted Bergman space over the unit ball ${\mathbb{B}^n}$ in ${\mathbb{C}^n}$ . New classes of commutative Banach algebras ${\mathcal{T}(\lambda)}$ which are generated by Toeplitz operators on ${\mathcal{A}_{\lambda}^2(\mathbb{B}^n)}$ have been recently discovered in Vasilevski (Integr Equ Oper Theory 66(1):141?C152, 2010). These algebras are induced by the action of the quasi-elliptic group of biholomorphisms of ${\mathbb{B}^n}$ . In the present paper we analyze in detail the internal structure of such an algebra in the lowest dimensional case n?=?2. We explicitly describe the maximal ideal space and the Gelfand map of ${\mathcal{T}(\lambda)}$ . Since ${\mathcal{T}(\lambda)}$ is not invariant under the *-operation of ${\mathcal{L}(\mathcal{A}_{\lambda}^2(\mathbb{B}^n))}$ its inverse closedness is not obvious and is proved. We remark that the algebra ${\mathcal{T}(\lambda)}$ is not semi-simple and we derive its radical. Several applications of our results are given and, in particular, we conclude that the essential spectrum of elements in ${\mathcal{T}(\lambda)}$ is always connected.  相似文献   

15.
In this paper we classify the factorable surfaces in the three-dimensional Euclidean space ${\mathbb{E}^{3}}$ and Lorentzian ${\mathbb{E}_{1}^{3}}$ under the condition ??r i ?=??? i r i , where ${\lambda_{i}\in\mathbb{R}}$ and ?? denotes the Laplace operator and we obtain the complete classification for those ones.  相似文献   

16.
Linear recurring sequences over finite fields play an important role in coding theory and cryptography. It is known that subfield subcodes of linear codes yield some good codes. In this paper, we study linear recurring sequences and subfield subcodes. Let Mqm(f(x)) denote the set of all linear recurring sequences over Fqm with characteristic polynomial f(x) over Fqm . Denote the restriction of Mqm(f(x)) to sequences over Fq and the set after applying trace function to each sequence in Mqm(f(x)) by Mqm(f(x)) | Fq and Tr( Mqm(f(x))), respectively. It is shown that these two sets are both complete sets of linear recurring sequences over Fq with some characteristic polynomials over Fq. In this paper, we firstly determine the characteristic polynomials for these two sets. Then, using these results, we determine the generator polynomials of subfield subcodes and trace codes of cyclic codes over Fqm .  相似文献   

17.
We construct a simply connected complete bounded mean curvature one surface in the hyperbolic 3-space ${\mathcal {H}^3}$ . Such a surface in ${\mathcal {H}^3}$ can be lifted as a complete bounded null curve in ${\rm {SL}(2,\mathbb {C})}$ . Using a transformation between null curves in ${\mathbb {C}^3}$ and null curves in ${\rm {SL}(2,\mathbb {C})}$ , we are able to produce the first examples of complete bounded null curves in ${\mathbb {C}^3}$ . As an application, we can show the existence of a complete bounded minimal surface in ${\mathbb {R}^3}$ whose conjugate minimal surface is also bounded. Moreover, we can show the existence of a complete bounded immersed complex submanifold in ${\mathbb {C}^2}$ .  相似文献   

18.
We consider a real reductive dual pair (G′, G) of type I, with rank ${({\rm G}^{\prime}) \leq {\rm rank(G)}}$ . Given a nilpotent coadjoint orbit ${\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}$ , let ${\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}$ denote the complex orbit containing ${\mathcal{O}^{\prime}}$ . Under some condition on the partition λ′ parametrizing ${\mathcal{O}^{\prime}}$ , we prove that, if λ is the partition obtained from λ by adding a column on the very left, and ${\mathcal{O}}$ is the nilpotent coadjoint orbit parametrized by λ, then ${\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}$ , where ${\tau, \tau^{\prime}}$ are the moment maps. Moreover, if ${chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}$ , where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to ${\mu_{\mathcal{O}^{\prime}}}$ with corresponds to ${\mathcal{O}_\mathbb{C}}$ via the Springer correspondence.  相似文献   

19.
Tensor data are becoming important recently in various application fields. In this paper, we consider the maximal rank problem of 3-tensors and extend Atkinson and Stephens’ and Atkinson and Lloyd’s results over the real number field. We also prove the assertion of Atkinson and Stephens: ${{\rm max.rank}_{\mathbb{R}}(m,n,p) \leq m+\lfloor p/2\rfloor n}$ , ${{\rm max.rank}_{\mathbb{R}}(n,n,p) \leq (p+1)n/2}$ if p is even, ${{\rm max.rank}_{\mathbb{F}}(n,n,3)\leq 2n-1}$ if ${\mathbb{F}=\mathbb{C}}$ or n is odd, and ${{\rm max.rank}_{\mathbb{F}}(m,n,3)\leq m+n-1}$ if m < n where ${\mathbb{F}}$ stands for ${\mathbb{R}}$ or ${\mathbb{C}}$ .  相似文献   

20.
This article is concerned with Ramanujan sums ${c_{\mathcal{I}_1}(\mathcal{I}),}$ where ${\mathcal{I},\mathcal{I}_1}$ are integral ideals in an arbitrary quadratic number field ${\mathbb{Q}(\sqrt{d}).}$ In particular, the asymptotic behavior of sums of ${c_{\mathcal{I}_1}(\mathcal{I}),}$ over both ${\mathcal{I}}$ and ${c_{\mathcal{I}_1}(\mathcal{I}),}$ is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号