首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let ${\Omega\subset\mathbb{R}^n}$ be open and bounded. For 1 ≤ p < ∞ and 0 ≤ λ < n, we give a characterization of Young measures generated by sequences of functions ${\{{\bf f}_j\}_{j=1}^\infty}$ uniformly bounded in the Morrey space ${L^{p,\lambda}(\Omega;\mathbb{R}^N)}$ with ${\{\left|{{\bf f}_j}\right|^p\}_{j=1}^\infty}$ equiintegrable. We then treat the case that each f j = ? u j for some ${{\bf u}_j\in W^{1,p}(\Omega;\mathbb{R}^N)}$ . As an application of our results, we consider the functional $${\bf u} \mapsto \int\limits_{\Omega}f({\bf x}, {\bf u}({\bf x}), {\bf {\nabla}}{\bf u}({\bf x})){\rm d}{\bf x},$$ and provide conditions that guarantee the existence of a minimizing sequence with gradients uniformly bounded in ${L^{p,\lambda}(\Omega;\mathbb{R}^{N\times n})}$ .  相似文献   

2.
In this paper, we prove an Osgood type regularity criterion for the model of liquid crystals, which says that the condition $$\sup_{2 \leq q< \infty} \int \nolimits_0^T \frac{\| \bar{S}_{q} \nabla {\bf u}(t)\|_{L^\infty}}{q \, {\rm \ln} \, q} {\rm d} t<\infty$$ implies the smoothness of the solution. Here, ${{\bar S_q=\sum\nolimits_{k=-q}^q \dot {\triangle}_k}}$ with ${\dot{\triangle}_k}$ being the frequency localization operator.  相似文献   

3.
We consider a singular perturbation problem for a system of nonlinear Schr?dinger equations: $$ \begin{array}{l} -\varepsilon^2\Delta v_1 +V_1(x)v_1 = \mu_1 v_1^3 + \beta v_1v_2^2 \quad {\rm in}\,\,{\bf R}^N, \\ -\varepsilon^2\Delta v_2 +V_2(x)v_2 = \mu_2 v_2^3 + \beta v_1^2v_2 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x) >0 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x)\in H^1({\bf R}^N), \end{array} \quad\quad\quad\quad\quad (*) $$ where N?=?2, 3, ?? 1, ?? 2, ?? > 0 and V 1(x), V 2(x): R N ?? (0, ??) are positive continuous functions. We consider the case where the interaction ?? > 0 is relatively small and we define for ${P\in{\bf R}^N}$ the least energy level m(P) for non-trivial vector solutions of the rescaled ??limit?? problem: $$ \begin{array}{l} -\Delta v_1 +V_1(P)v_1 = \mu_1 v_1^3 + \beta v_1v_2^2 \quad {\rm in}\,\,{\bf R}^N, \\ -\Delta v_2 +V_2(P)v_2 = \mu_2 v_2^3 + \beta v_1^2v_2 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x) >0 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x)\in H^1({\bf R}^N). \end{array} \quad\quad\quad\quad\quad\quad (**) $$ We assume that there exists an open bounded set ${\Lambda\subset{\bf R}^N}$ satisfying $$ {\mathop {\rm inf} _{P\in\Lambda} m(P)} < {\mathop {\rm inf}_{P\in\partial\Lambda} m(P)}. $$ We show that (*) possesses a family of non-trivial vector positive solutions ${\{(v_{1\varepsilon}(x), v_{2\varepsilon} (x))\}_{\varepsilon\in (0,\varepsilon_0]}}$ which concentrates??after extracting a subsequence ?? n ?? 0??to a point ${P_0\in\Lambda}$ with ${m(P_0)={\rm inf}_{P\in\Lambda}m(P)}$ . Moreover (v 1?? (x), v 2?? (x)) converges to a least energy non-trivial vector solution of (**) after a suitable rescaling.  相似文献   

4.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

5.
We deal with the following parabolic problem, $$(P)\left\{\begin{array}{lll} u_t - \Delta{u} + |\nabla{u}|^q \quad=\quad \lambda{g}(x)u + f(x, t),\quad u > 0 \; {\rm in} \; \Omega \; \times \; (0, T),\\ \qquad\quad\quad\; u(x, t) \quad=\quad 0 \quad{\rm on}\; {\partial}{\Omega}\; \times ; (0, T),\\ \qquad\quad\quad\; u(x, 0) \quad=\quad u_{0}(x), \quad x \in {\Omega},\end{array}\right.$$ where is a bounded regular domain or ${\Omega = \mathbb{R}^N}$ , ${1 < q \leq 2, \lambda > 0\; {\rm and}\; f \geq 0, u_{0} \geq 0}$ are in a suitable class of functions. We give assumptions on g with respect to q for which for all λ >  0 and all ${f \in L^1(\Omega_T ), f \geq 0}$ , problem (P) has a positive solution. Under some additional conditions on the data, the Cauchy problem and the asymptotic behavior of the solution are also considered.  相似文献   

6.
The generalized weighted mean operator ${\mathbf{M}^{g}_{w}}$ is given by $$[\mathbf{M}^{g}_{w}f](x) = g^{-1} \left( \frac{1}{W(x)} \int \limits_{0}^{x}w(t)g(f(t))\,{\rm d}t \right),$$ with $$W(x) = \int \limits_{0}^{x} w(s) {\rm d}s, \quad {\rm for} \, x \in (0, + \infty),$$ where w is a positive measurable function on (0, + ∞) and g is a real continuous strictly monotone function with its inverse g ?1. We give some sufficient conditions on weights u, v on (0, + ∞) for which there exists a positive constant C such that the weighted strong type (p, q) inequality $$\left( \int \limits_{0}^{\infty} u(x) \Bigl( [\mathbf{M}^{g}_{w}f](x) \Bigr)^{q} {\rm d}x \right)^{1 \over q} \leq C \left( \int \limits_{0}^{\infty}v(x)f(x)^{p} {\rm d}x \right)^{1 \over p}$$ holds for every measurable non-negative function f, where the positive reals p,q satisfy certain restrictions.  相似文献   

7.
We consider the degenerate elliptic operator acting on ${C^2_b}$ functions on [0,∞) d : $$\mathcal{L}f(x)=\sum_{i=1}^d a_i(x) x_i^{\alpha_i} \frac{\partial^2 f}{\partial x_i^2} (x) +\sum_{i=1}^d b_i(x) \frac{\partial f}{\partial x_i}(x), $$ where the a i are continuous functions that are bounded above and below by positive constants, the b i are bounded and measurable, and the ${\alpha_i\in (0,1)}$ . We impose Neumann boundary conditions on the boundary of [0,∞) d . There will not be uniqueness for the submartingale problem corresponding to ${\mathcal{L}}$ . If we consider, however, only those solutions to the submartingale problem for which the process spends 0 time on the boundary, then existence and uniqueness for the submartingale problem for ${\mathcal{L}}$ holds within this class. Our result is equivalent to establishing weak uniqueness for the system of stochastic differential equations $$ {\rm d}X_t^i=\sqrt{2a_i(X_t)} (X_t^i)^{\alpha_i/2}{\rm d}W^i_t + b_i(X_t) {\rm d}t + {\rm d}L_t^{X^i},\quad X^i_t \geq 0, $$ where ${W_t^i}$ are independent Brownian motions and ${L^{X_i}_t}$ is a local time at 0 for X i .  相似文献   

8.
For p > 1, we establish existence and asymptotic behavior of a positive continuous solution to the following boundary value problem $$\left\{\begin{array}{ll}\frac{1}{A} \left( A\Phi _{p}(u^{\prime})\right) ^{\prime}+a_{1}(r)u^{\alpha _{1}}+a_{2}(r)u^{\alpha _{2}}=0, \, {\rm in}\, (0,\infty ),\\ {\rm lim}_{r\rightarrow 0} A\Phi _{p}(u^{\prime})(r)=0, {\rm lim}_{r\rightarrow \infty } u(r)=0,\end{array}\right.$$ where \({\alpha _{1}, \alpha _{2} < p -1, \Phi _{p}(t) = t|t| ^{p-2},A}\) is a positive differentiable function and a 1, a 2 are two positive functions in \({C_{\rm loc}^{\gamma}((0, \infty )), 0 < \gamma < 1,}\) satisfying some appropriate assumptions related to Karamata regular variation theory. Also, we obtain an uniqueness result when \({\alpha _{1}, \alpha _{2} \in (1-p,p-1)}\) . Our arguments combine a method of sub and supersolutions with Karamata regular variation theory.  相似文献   

9.
Let {X k,i ; i ≥ 1, k ≥ 1} be a double array of nondegenerate i.i.d. random variables and let {p n ; n ≥ 1} be a sequence of positive integers such that n/p n is bounded away from 0 and ∞. In this paper we give the necessary and sufficient conditions for the asymptotic distribution of the largest entry ${L_{n}={\rm max}_{1\leq i < j\leq p_{n}}|\hat{\rho}^{(n)}_{i,j}|}$ of the sample correlation matrix ${{\bf {\Gamma}}_{n}=(\hat{\rho}_{i,j}^{(n)})_{1\leq i,j\leq p_{n}}}$ where ${\hat{\rho}^{(n)}_{i,j}}$ denotes the Pearson correlation coefficient between (X 1,i , ..., X n,i )′ and (X 1,j ,...,X n,j )′. Write ${F(x)= \mathbb{P}(|X_{1,1}|\leq x), x\geq0}$ , ${W_{c,n}={\rm max}_{1\leq i < j\leq p_{n}}|\sum_{k=1}^{n}(X_{k,i}-c)(X_{k,j}-c)|}$ , and ${W_{n}=W_{0,n},n\geq1,c\in(-\infty,\infty)}$ . Under the assumption that ${\mathbb{E}|X_{1,1}|^{2+\delta} < \infty}$ for some δ > 0, we show that the following six statements are equivalent: $$ {\bf (i)} \quad \lim_{n \to \infty} n^{2}\int\limits_{(n \log n)^{1/4}}^{\infty}\left( F^{n-1}(x) - F^{n-1}\left(\frac{\sqrt{n \log n}}{x}\right) \right) dF(x) = 0,$$ $$ {\bf (ii)}\quad n \mathbb{P}\left ( \max_{1 \leq i < j \leq n}|X_{1,i}X_{1,j} | \geq \sqrt{n \log n}\right ) \to 0 \quad{\rm as}\,n \to \infty,$$ $$ {\bf (iii)}\quad \frac{W_{\mu, n}}{\sqrt {n \log n}}\stackrel{\mathbb{P}}{\rightarrow} 2\sigma^{2},$$ $$ {\bf (iv)}\quad \left ( \frac{n}{\log n}\right )^{1/2} L_{n} \stackrel{\mathbb{P}}{\rightarrow} 2,$$ $$ {\bf (v)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (\frac{W_{\mu, n}^{2}}{n \sigma^{4}} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8\pi}} e^{-t/2}\right \}, - \infty < t < \infty,$$ $$ {\bf (vi)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (n L_{n}^{2} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8 \pi}} e^{-t/2}\right \}, - \infty < t < \infty$$ where ${\mu=\mathbb{E}X_{1,1}, \sigma^{2}=\mathbb{E}(X_{1,1} - \mu)^{2}}$ , and a n  = 4 log p n ? log log p n . The equivalences between (i), (ii), (iii), and (v) assume that only ${\mathbb{E}X_{1,1}^{2} < \infty}$ . Weak laws of large numbers for W n and L n , n ≥  1, are also established and these are of the form ${W_{n}/n^{\alpha}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(\alpha > 1/2)$ and ${n^{1-\alpha}L_{n}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(1/2 < \alpha \leq 1)$ , respectively. The current work thus provides weak limit analogues of the strong limit theorems of Li and Rosalsky as well as a necessary and sufficient condition for the asymptotic distribution of L n obtained by Jiang. Some open problems are also posed.  相似文献   

10.
Let \({\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, I = (d, \infty), \phi : I \to I}\) be unbounded continuous and increasing, X be a normed space over \({\mathbb{K}, \mathcal{F} : = \{f \in X^I : {\rm lim}_{t \to \infty} f(t) {\rm exists} \, {\rm in} X\},\hat{a} \in \mathbb{K}, \mathcal{A}(\hat{a}) : = \{\alpha \in \mathbb{K}^I : {\rm lim}_{t \to \infty} \alpha(t) = \hat{a}\},}\) and \({\mathcal{X} : = \{x \in X^I : {\rm lim} \, {\rm sup}_{t \to \infty} \|x(t)\| < \infty\}}\) . We prove that the limit lim t → ∞ x(t) exists for every \({f \in \mathcal{F}, \alpha \in \mathcal{A}(\hat{a})}\) and every solution \({x \in \mathcal{X}}\) of the functional equation $$x(\phi(t)) = \alpha(t) x(t) + f(t)$$ if and only if \({|\hat{a}| \neq 1}\) . Using this result we study behaviour of bounded at infinity solutions of the functional equation $$x(\phi^{[k]}(t)) = \sum_{j=0}^{k-1} \alpha_j(t) x (\phi^{[j]}(t)) + f(t),$$ under some conditions posed on functions \({\alpha_j(t), j = 0, 1,\ldots, k - 1,\phi}\) and f.  相似文献   

11.
This paper is concerned with the Cauchy problem for the Keller–Segel system $$\left\{\begin{array}{l@{\quad}l}u_t = \nabla \cdot (\nabla u - u \nabla v) & \hbox{in } {\bf R}^{2} \times(0,\infty),\\v_t = \Delta v - \lambda v + u & \hbox{ in } {\bf R}^2 \times(0,\infty),\\u(x,0) = u_0 (x) \geq 0, \; v(x,0) = v_0 (x) \geq 0 & \hbox{ in} {\bf R}^2\end{array}\right.$$ with a constant λ ≥ 0, where ${(u_0, v_0) \in (L^1 ({\bf R}^2) \cap L^\infty ({\bf R}^2) ) \times (L^1 ({\bf R}^2) \cap H^1 ({\bf R}^2))}$ . Let $$m (u_0;{\bf R}^2) = \int\limits_{{\bf R}^2} u_0 (x) dx$$ . The same method as in [9] yields the existence of a blowup solution with m (u 0; R 2) > 8π. On the other hand, it was recently shown in [7] that under additional hypotheses ${u_0 \log (1 + |x|^2) \in L^1 ({\bf R}^2)}$ and ${u_0 \log u_0 \in L^1 ({\bf R}^2)}$ , any solution with m(u 0; R 2) < 8π exists globally in time. In[18], the extra assumptions were taken off, but the condition on mass was restricted to m (u 0; R 2) < 4π. In this paper, we prove that any solution with m (u 0; R 2) < 8π exists globally in time under no extra conditions. Furthermore the global existence of solutions is obtained under some condition on u 0 also in the critical case m (u 0; R 2) = 8π.  相似文献   

12.
In the projective planes PG(2, q), more than 1230 new small complete arcs are obtained for ${q \leq 13627}$ and ${q \in G}$ where G is a set of 38 values in the range 13687,..., 45893; also, ${2^{18} \in G}$ . This implies new upper bounds on the smallest size t 2(2, q) of a complete arc in PG(2, q). From the new bounds it follows that $$t_{2}(2, q) < 4.5\sqrt{q} \, {\rm for} \, q \leq 2647$$ and q = 2659,2663,2683,2693,2753,2801. Also, $$t_{2}(2, q) < 4.8\sqrt{q} \, {\rm for} \, q \leq 5419$$ and q = 5441,5443,5449,5471,5477,5479,5483,5501,5521. Moreover, $$t_{2}(2, q) < 5\sqrt{q} \, {\rm for} \, q \leq 9497$$ and q = 9539,9587,9613,9623,9649,9689,9923,9973. Finally, $$t_{2}(2, q) <5 .15\sqrt{q} \, {\rm for} \, q \leq 13627$$ and q = 13687,13697,13711,14009. Using the new arcs it is shown that $$t_{2}(2, q) < \sqrt{q}\ln^{0.73}q {\rm for} 109 \leq q \leq 13627\, {\rm and}\, q \in G.$$ Also, as q grows, the positive difference ${\sqrt{q}\ln^{0.73} q-\overline{t}_{2}(2, q)}$ has a tendency to increase whereas the ratio ${\overline{t}_{2}(2, q)/(\sqrt{q}\ln^{0.73} q)}$ tends to decrease. Here ${\overline{t}_{2}(2, q)}$ is the smallest known size of a complete arc in PG(2,q). These properties allow us to conjecture that the estimate ${t_{2}(2,q) < \sqrt{q}\ln ^{0.73}q}$ holds for all ${q \geq 109.}$ The new upper bounds are obtained by finding new small complete arcs in PG(2,q) with the help of a computer search using randomized greedy algorithms. Finally, new forms of the upper bound on t 2(2,q) are proposed.  相似文献   

13.
Generalizing two results of Rieger [8] and Selberg [10] we give asymptotic formulas for sums of type $${\matrix {\sum \limits_{n\leq x}\cr n\equiv l({\rm mod}k)\cr f_{\kappa}(n)\equiv s_{\kappa}({\rm mod}p_{\kappa})\cr (\kappa=1,\dots,r)\cr}}\qquad \chi(n)\qquad {\rm and} {\matrix {\sum \limits_{n\leq x}\cr n\equiv l({\rm mod}k)\cr f_{\kappa}(n)\equiv s_{\kappa}({\rm mod}p_{\kappa})\cr (\kappa=1,\dots,r)\cr}}\qquad \chi(n),$$ where χ is a suitable multiplicative function, f1,…, f r are “small” additive, prime-independent arithmetical functions and k, l are coprime. The proofs are based on an analytic method which consists of considering the Dirichlet series generated by $ \chi(n)z_{1}^{f_{1}(n)}\cdot... \cdot z_{r}^{f_{r}(n)},z_{1}\dots z_{r} $ complex.  相似文献   

14.
We present some new necessary and sufficient conditions for the oscillation of second order nonlinear dynamic equation $$\bigl(a\bigl(x^{\Delta }\bigr)^{\alpha }\bigr)^{\Delta }(t)+q(t)x^{\beta }(t)=0$$ on an arbitrary time scale $\mathbb{T}$ , where α and β are ratios of positive odd integers, a and q are positive rd-continuous functions on $\mathbb{T}$ . Comparison results with the inequality $$\bigl(a\bigl(x^{\Delta }\bigr)^{\alpha }\bigr)^{\Delta }(t)+q(t)x^{\beta }(t)\leqslant 0\quad (\geqslant 0)$$ are established and application to neutral equations of the form $$\bigl(a(t)\bigl(\bigl[x(t)+p(t)x[\tau (t)]\bigr]^{\Delta }\bigr)^{\alpha }\bigr)^{\Delta }+q(t)x^{\beta }\bigl[g(t)\bigr]=0$$ are investigated.  相似文献   

15.
In this paper we deal with local estimates for parabolic problems in ${\mathbb{R}^N}$ with absorbing first order terms, whose model is $$\left\{\begin{array}{l@{\quad}l}u_t- \Delta u +u |\nabla u|^q = f(t,x) \quad &{\rm in}\, (0,T) \times \mathbb{R}^N\,,\\u(0,x)= u_0 (x) &{\rm in}\, \mathbb{R}^N \,,\quad\end{array}\right.$$ where ${T >0 , \, N\geq 2,\, 1 < q \leq 2,\, f(t,x)\in L^1\left( 0,T; L^1_{\rm loc} \left(\mathbb{R}^N\right)\right)}$ and ${u_0\in L^1_{\rm loc}\left(\mathbb{R}^{N}\right)}$ .  相似文献   

16.
For ${N = 1, 2,\ldots,}$ let S N be a simple random sample of size n = n N from a population A N of size N, where ${0 \leq n \leq N}$ . Then with f N n/N, the sampling fraction, and 1 A the inclusion indicator that ${A \in S_N}$ , for any ${H \subset A_N}$ of size ${k \geq 0}$ , the high order correlations $${\rm Corr}(k) = E \big(\mathop{\Pi}\limits_{A \in H} ({\bf 1}_A - f_N )\big)$$ depend only on k, and if the sampling fraction ${f_N \rightarrow f}$ as ${N \rightarrow \infty}$ , then $$N^{k/2}{\rm Corr}(k) \rightarrow [f (f - 1)]^{k/2}EZ^{k}, k \,{\rm even}$$ and $$N^{(k+1)/2}{\rm Corr}(k) \rightarrow [f (f - 1)]^{(k-1)/2}(2f - 1)\frac{1}{3}(k - 1)EZ^{k+1}, k \,{\rm odd}$$ where Z is a standard normal random variable. This proves a conjecture given in [2].  相似文献   

17.
Let ${P(t) \in \mathbb{Q}[t]}$ be an irreducible quadratic polynomial and suppose that K is a quartic extension of ${\mathbb{Q}}$ containing the roots of P(t). Let ${{\bf N}_{K/\mathbb{Q}}({\rm x})}$ be a full norm form for the extension ${K/\mathbb{Q}}$ . We show that the variety $$\begin{array}{ll}P(t)={\bf N}_{K/\mathbb{Q}}({\rm x})\neq 0\end{array}$$ satisfies the Hasse principle and weak approximation. The proof uses analytic methods.  相似文献   

18.
We prove two antibasis theorems for ${\Pi^0_1}$ classes. The first is a jump inversion theorem for ${\Pi^0_1}$ classes with respect to the global structure of the Turing degrees. For any ${P\subseteq 2^\omega}$ , define S(P), the degree spectrum of P, to be the set of all Turing degrees a such that there exists ${A \in P}$ of degree a. For any degree ${{\bf a \geq 0'}}$ , let ${\textrm{Jump}^{-1}({\bf a) = \{b : b' = a \}}}$ . We prove that, for any ${{\bf a \geq 0'}}$ and any ${\Pi^0_1}$ class P, if ${\textrm{Jump}^{-1} ({\bf a}) \subseteq S(P)}$ then P contains a member of every degree. For any degree ${{\bf a \geq 0'}}$ such that a is recursively enumerable (r.e.) in 0', let ${Jump_{\bf \leq 0'} ^{-1}({\bf a)=\{b : b \leq 0' \textrm{and} b' = a \}}}$ . The second theorem concerns the degrees below 0'. We prove that for any ${{\bf a\geq 0'}}$ which is recursively enumerable in 0' and any ${\Pi^0_1}$ class P, if ${\textrm{Jump}_{\bf \leq 0'} ^{-1}({\bf a)} \subseteq S(P)}$ then P contains a member of every degree.  相似文献   

19.
Let \(\Delta _0\) be the Laplace–Beltrami operator on the unit sphere \(\mathbb {S}^{d-1}\) of \({\mathbb R}^d\) . We show that the Hardy–Rellich inequality of the form $$\begin{aligned} \mathop \int \limits _{\mathbb {S}^{d-1}} \left| f (x)\right| ^2 \mathrm{d}{\sigma }(x) \le c_d \min _{e\in \mathbb {S}^{d-1}} \mathop \int \limits _{\mathbb {S}^{d-1}} (1- {\langle }x, e {\rangle }) \left| (-\Delta _0)^{\frac{1}{2}}f(x) \right| ^2 \mathrm{d}{\sigma }(x) \end{aligned}$$ holds for \(d =2\) and \(d \ge 4\) but does not hold for \(d=3\) with any finite constant, and the optimal constant for the inequality is \(c_d = 8/(d-3)^2\) for \(d =2, 4, 5,\) and, under additional restrictions on the function space, for \(d\ge 6\) . This inequality yields an uncertainty principle of the form $$\begin{aligned} \min _{e\in \mathbb {S}^{d-1}} \mathop \int \limits _{\mathbb {S}^{d-1}} (1- {\langle }x, e {\rangle }) |f(x)|^2 \mathrm{d}{\sigma }(x) \mathop \int \limits _{\mathbb {S}^{d-1}}\left| \nabla _0 f(x)\right| ^2 \mathrm{d}{\sigma }(x) \ge c'_d \end{aligned}$$ on the sphere for functions with zero mean and unit norm, which can be used to establish another uncertainty principle without zero mean assumption, both of which appear to be new.  相似文献   

20.
Jachymski showed that the set $$\left\{ {(x,y) \in {{\rm{c}}_0} \times {{\rm{c}}_0}:\left( {\sum\limits_{i = 1}^n {\alpha (i)x(i)y(i)} } \right)_{n = 1}^\infty {\rm{ is bounded}}} \right\}$$ is either a meager subset of c 0 × c 0 or is equal to c 0 × c 0. In the paper we generalize this result by considering more general spaces than c 0, namely C 0(X), the space of all continuous functions which vanish at infinity, and C b (X), the space of all continuous bounded functions. Moreover, we replace the meagerness by σ-porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号