首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We formulate a U(1) gauge theory of the Hubbard model in the slave-rotor representation. From this formalism it is argued that spin liquid phases may exist near the Mott transition in the Hubbard model on triangular and honeycomb lattices at half filling. The organic compound kappa-(BEDT-TTF)2Cu2(CN)3 is a good candidate for the spin liquid state on a triangular lattice. We predict a highly unusual temperature dependence for the thermal conductivity of this material.  相似文献   

2.
We present a numerical study of the Hubbard-Holstein model in one dimension at half filling, including finite-frequency quantum phonons. At half filling, the effects of the electron-phonon and electron-electron interactions compete with the Holstein phonon coupling acting as an effective negative Hubbard on-site interaction U that promotes on-site electron pairs and a Peierls charge-density wave state. Most previous work on this model has assumed that only Peierls or Mott phases are possible at half filling. However, there has been speculation that a third metallic phase exists between the Peierls and Mott phases. We confirm the intermediate phase, and show that the Luttinger liquid correlation exponent K(rho) >1 in this region, indicating dominant superconducting pair correlations. We explore the full phase diagram as a function of Hubbard U, phonon coupling constant, and phonon frequency.  相似文献   

3.
Electronic state of the 2D Hubbard model near the half-filling is analyzed by use of the composite operator method. Doping and temperature dependence of density of states show similar behaviors obtained in numerical simulation. The weight of the upper and lower Hubbard bands at the half filling are not evenly distributed in the Brillouin zone, keeping roughly the original band distribution. With hole doping the lower Hubbard band spreads in the whole zone.  相似文献   

4.
A dimensional scaling computation of the electron concentration-dependent ground-state energy for the repulsive Hubbard model is presented, a generalization of Capelle’s analysis of the 2D and 3D Hubbard Hamiltonians with half-filled bands. The computed ground-state energies are compared with the results of mean-field and density-matrix functional theories and of quantum Monte Carlo calculations. The comparison indicates that dimensional scaling yields moderately accurate ground-state energies close to and at half filling over the wide range of interaction strengths in the study. By contrast, the accuracy becomes poor at low filling for strong interactions.  相似文献   

5.
We study strongly correlated electrons on a kagome lattice at 1/6 (and 5/6) filling. They are described by an extended Hubbard Hamiltonian. We are concerned with the limit |t|相似文献   

6.
7.
We investigate the fermionic SU(N) Hubbard model on the two-dimensional square lattice for weak to moderate interactions using renormalization group and mean-field methods. For the repulsive case U>0 at half filling and small N the dominant tendency is towards breaking of the SU(N) symmetry. For N>6 staggered flux order takes over as the dominant instability, in agreement with the large-N limit. Away from half filling for N=3 two flavors remain half filled by cannibalizing the third flavor. For U<0 and odd N a full Fermi surface coexists with a superconductor. These results may be relevant to future experiments with cold fermionic atoms in optical lattices.  相似文献   

8.
We consider the Hubbard model at half filling, driven by an external, stationary laser field. This stationary, but periodic in time, electromagnetic field couples to the charge current, i.e. it induces an extra contribution to the hopping amplitude in the Hubbard Hamiltonian (photo‐induced hopping). We generalize the dynamical mean‐field theory (DMFT) for nonequilibrium with periodic‐in‐time external fields, using a Floquet mode representation and the Keldysh formalism. We calculate the non‐equilibrium electron distribution function, the density of states and the optical DC conductivity in the presence of the external laser field for laser frequencies above and below the Mott‐Hubbard gap. The results demonstrate that the system exhibits an insulator‐metal transition as the frequency of the external field is increased and exceeds the Mott‐Hubbard gap. This corresponds to photo‐induced excitations into the upper Hubbard band.  相似文献   

9.
The band effects on the conductivity of a one-dimensional two-band Hubbard model is studied based on the ground state energy analysis. It is found that the system with filling factor one is a metal at zero temperature if the on-site interaction U is smaller than a critical value Uc, and is an insulator if U is larger than Uc. The value of metal-insulator transition point Uc is obtained. This result is different from that of 1D single-band Hubbard model where the quantum phase transition point Uc=0. Therefore, the orbital degree of freedom plays an essential role in the states of matter.  相似文献   

10.
The quintessential two-dimensional lattice model that describes the competition between the kinetic energy of electrons and their short-range repulsive interactions is the repulsive Hubbard model. We study a time-reversal symmetric variant of the repulsive Hubbard model defined on a planar lattice: Whereas the interaction is unchanged, any fully occupied band supports a quantized spin Hall effect. We show that at 1/2 filling of this band, the ground state develops spontaneously and simultaneously Ising ferromagnetic long-range order and a quantized charge Hall effect when the interaction is sufficiently strong. We ponder on the possible practical applications, beyond metrology, that the quantized charge Hall effect might have if it could be realized at high temperatures and without external magnetic fields in strongly correlated materials.  相似文献   

11.
The effects of both interactions and Zeeman magnetic field in disordered electronic systems are explored in the Hubbard model on a square lattice. We investigate the thermodynamic (density, magnetization, density of states) and transport (conductivity) properties using determinantal quantum Monte Carlo and inhomogeneous Hartree Fock techniques. We find that at half filling there is a novel metallic phase at intermediate disorder that is sandwiched between a Mott insulator and an Anderson insulator. The metallic phase is highly inhomogeneous and coexists with antiferromagnetic long-range order. At quarter filling also the combined effects of disorder and interactions produce a conducting state which can be destroyed by applying a Zeeman field, resulting in a magnetic field-driven transition. We discuss the implication of our results for experiments.  相似文献   

12.
We study models of strongly correlated electrons in one-and two dimensions. We exactly diagonalize small clusters with general boundary conditions (BC) and integrate over all possible BC. This technique recovers the kinetic energy part of the (extended lattice) Hamiltonianexactly in a grand-canonical formulation. A continuous range of particle densities may be described with this technique and the momentum space can be probed for arbitrary momenta. For the Hubbard Hamiltonian we recover details of the Mott-insulating behaviour for the momentum distribution function at half filling, both in 1D and 2D. Off half-filling the shape of thecanonical Fermi surface is strongly distorted in 2D with respect to thegrand canonical Fermi surface. The shape of the grand canonical Fermi surface obtained by this finite-size technique reduces in the weak-coupling limit exactly to that of the infinite-lattice Fermi sea.email: UPH 301 at DDOHR Z11  相似文献   

13.
An interplay between kinetic process and magnetic ordering is manifested when strong correlation and electronic frustration are present: tuning a staggered flux phi from 0 to pi makes the ground state (GS) of an infinite-U Hubbard model change abruptly from a Nagaoka-type ferromagnet to a Haerter-Shastry-type antiferromagnet at a phi_(c), with both states being metallic and of kinetic origin. Intraplaquette spin correlation, as well as nonanalyticity in the GS energy, signals such a novel quantum criticality. This tunable kinetic magnetism is generic and may be experimentally realized.  相似文献   

14.
We consider the two-dimensional (2D) Hubbard model on the honeycomb lattice, as a model for a single layer graphene sheet in the presence of screened Coulomb interactions. At half filling and weak enough coupling, we compute the free energy, the ground state energy and we construct the correlation functions up to zero temperature in terms of convergent series; analyticity is proved by making use of constructive fermionic renormalization group methods. We show that the interaction produces a modification of the Fermi velocity and of the wave function renormalization without changing the asymptotic infrared properties of the model with respect to the unperturbed non-interacting case; this rules out the possibility of superconducting or magnetic instabilities in the thermal ground state.  相似文献   

15.
The attractive Hubbard model on the honeycomb lattice exhibits, at half filling, a quantum critical point between a semimetal with massless Dirac fermions and an s-wave superconductor (SC). We study the BCS-BEC crossover in this model away from half filling at zero temperature and show that the appropriately defined crossover line (in the interaction-density plane) passes through the quantum critical point at half filling. For a range of densities around half filling, the "underlying Fermi surface" of the SC, defined as the momentum space locus of minimum energy quasiparticle excitations, encloses an area which changes nonmonotonically with interaction. We also study fluctuations in the SC and the semimetal, and show the emergence of an undamped Leggett mode deep in the SC. Finally, we consider possible implications for ultracold atoms in optical lattices and the high temperature SCs.  相似文献   

16.
Extended t-t'-t"-J-U models in which the second-nearest-neighbor hopping (t') and third-nearest-neighbor hopping (t") are included are studied using renormalized mean field theory. The models are meant to be low-energy effective models for the Hubbard models, and hence the Heisenberg exchange integral J and Hubbard repulsion U are related by J = 4t(2)/U. The trial wavefunctions for the ground states are partially Gutzwiller projected Hartree-Fock states. The Gutzwiller projection is implemented by means of a Gutzwiller approximation, and the site double occupancy d is taken as a variational parameter. It is found that a large |t'/t| narrows the band filling range that sustains antiferromagnetism (AFM) in the ground state, enhances the d-wave singlet superconductivity (dSC) in hole overdoped systems, but suppresses the dSC in electron overdoped systems. For a system that has large |t'/t| and |t"/t'|, the superconductivity (SC) at the onset of AFM in hole doped band filling is strongly suppressed. On the excitation occurring, when an electron doped system simultaneously contains SC and AFM, the system is found to have a nodeless gap at the Fermi level. Finally, the result of this study is related to experiments on the superconducting cuprates.  相似文献   

17.
By means of density functional theory, we investigate the magnetic ground state of edge-sharing CuO2 spin chains, as found in the (La,Ca,Sr)14Cu24O41 system, for instance. Our data rely on spin-polarized electronic structure calculations including on-site interaction [local density approximation plus the multiorbital mean-field Hubbard model (LDA+U)] and an effective model for the interchain coupling. Strong doping dependence of the magnetic order is characteristic for edge-sharing CuO2 spin chains. We determine the ground state magnetic structure as function of the spin-chain filling and quantify the competing exchange interactions.  相似文献   

18.
While the optical properties of the superconducting salt alpha-(BEDT-TTF)(2)-NH4Hg(SCN)(4) remain metallic down to 2 K, in the nonsuperconducting K analog a pseudogap develops at frequencies of about 200 cm(-1) for temperatures T<200 K. We show that the optical conductivity calculated with exact-diagonalization techniques on an extended Hubbard model at quarter filling is consistent with the observed low-frequency feature. We argue that the different optical responses observed are a consequence of the proximity of these compounds to a charge-ordering transition driven by the intermolecular Coulomb repulsion.  相似文献   

19.
We investigate the optical conductivity of iron pnictides in antiferromagnetic state by mean-field calculation in a five-band Hubbard model, focusing on its anisotropic behavior by examining several states calculated with different Hund coupling J, such as the states with a low or high magnetization and with or without a strong orbital ordering. In addition, we investigate the J dependence of the Dirac cone structure, which is crucial for the low energy excitation. In our calculations, a weakly ordered state with no orbital ordering shows the anisotropy of optical conductivity in accord with experiments. We conclude that the low energy part of the optical conductivity is relevant to the Dirac electron structure rather than the orbital ordering.  相似文献   

20.
The low energy spin and charge excitations in the 2D Hubbard model near half filling are analyzed. The RPA spectra derived from inhomoheneous mean field textures are analyzed. Spin excitations show a commensurate peak at half filling, incommensurate peaks near half filling, and a broad background typical of a dilute Fermi liquid away from half filling. Charge excitations, near half filling, are localized near (0,0), and they occupy a small portion of the Brillouin Zone, in a way consistent with the existence of a small density of carriers, and a small Fermi surface. At higher hole densities, they fill the entire BZ, and can be understood in terms of a conventional Fermi liquid picture. The results are consistent with the observed features of the high-Tc superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号