首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以有限温度Brueckner-Hartree-Fock(BHF)方法为基础,利用质量算子的空穴线展开,计算了不同温度和密度下的核物质中单核子势和核子有效质量,特别是研究和讨论了基态关联效应和三体核力贡献对热核物质中单核子势的影响. 研究表明,基态关联和三体核力对单核子势的密度和温度依赖性均有重要影响. 基态关联导致的重排修正具有排斥性,大大减弱了低动量区域单核子势的吸引性,而且基态关联效应对单核子势的贡献随密度增大而增强,随温度升高而减弱. 三体核力对基态关联的影响是导致单核子势中重排项贡献减小. 在高密 关键词: 有限温度BHF方法 质量算子空穴线展开 重排修正 单核子势 有效质量  相似文献   

2.
We present an upgraded review of our microscopic investigation on the single-particle properties and the EOS of isospin asymmetric nuclear matter within the framework of the Brueckner theory extended to include a microscopic three-body force. We pay special attention to the discussion of the three-body force effect and the comparison of our results with the predictions by other ab initio approaches. Three-body force is shown to be necessary for reproducing the empirical saturation properties of symmetric nuclear matter within nonrelativistic microscopic frameworks, and also for extending the hole-line expansion to a wide density range. The three-body force effect on nuclear symmetry energy is repulsive, and it leads to a significant stiffening of the density dependence of symmetry energy at supra-saturation densities. Within the Brueckner approach, the three-body force affects the nucleon s.p. potentials primarily via its rearrangement contribution which is strongly repulsive and momentum-dependent at high densities and high momenta. Both the rearrangement contribution induced by the three-body force and the effect of ground-state correlations are crucial for predicting reliably the single-particle properties within the Brueckner framework.  相似文献   

3.
左维  陆广成  李增花  罗培燕 《中国物理 C》2005,29(12):1162-1166
在包含三体核力的有限温度Brueckner-Hartree-Fock理论方法基础上, 利用质量算子的空穴线展开, 研究了热核物质中基态关联所导致的对单核子势的重排修正项的密度和温度依赖性, 并讨论了三体核力对重排项的影响. 结果表明:单核子势的重排项贡献具有较强的密度和温度相关性, 重排项贡献随密度增加而增强并随温度升高而减弱. 在计算中引入三体核力会在一定程度上抑制基态空穴关联 效应, 从而导致单核子势的重排项贡献减小, 而且三体核力对重排项贡献的影响随密度增大而增强.  相似文献   

4.
左维  李昂  罗陪燕  雍高产 《中国物理 C》2006,30(10):956-960
在Brueckner-Hartree-Fock理论框架内, 研究了新生中子星的状态方程和性质, 计算了新生中子星的最大质量和新生中子星中质子占总核子数的丰度, 特别是讨论了三体核力和中微子束缚效应的影响以及三体核力和中微子束缚效应的相互影响. 结果表明, 无论是否考虑三体核力, 中微子束缚对新生中子星的状态方程和质子丰度均有明显影响. 中微子束缚导致新生中子星物质中的质子丰度显著增大. 三体核力的贡献是使新生中子星的状态方程变硬并导致新生中子星中质子丰度明显增大. 束缚在中子星物质中的中微子显著减弱了三体核力对于中子星物质中质子丰度的影响.  相似文献   

5.
We investigate the equation of state of asymmetric nuclear matter and its isospin dependence in various spin-isospin ST channels within the framework of the Brueckner-Hartree-Fock approach extended to include a microscopic three-body force (TBF). It is shown that the potential energy per nucleon in the isospin-singlet T=0 channel is mainly determined by the contribution from the tensor SD coupled channel. At high densities, the TBF effect on the lsospin-triplet T=1 channel contribution turns out to be much larger than that on the T=0 channel contribution. At low densities around and below the normal nuclear matter density, the isospin dependence is found to come essentially from the isospin-singlet SD channel and the isospin-triplet T=1 component is almost independent of isospin asymmetry. As the density increases, the T=1 channel contribution becomes sensitive to the isospin asymmetry and at high enough densities its isospin dependence may even become more pronounced than that of the T=0 contribution. The present results may provide some microscopic constraints for improving effective nucleon-nucleon interactions in a nuclear medium and for constructing new functionals of effective nucleon-nucleon interaction based on microscopic many-body theories.  相似文献   

6.
在微观多体Brueckner-Hartree-Fock理论框架内, 实现了三体核力对核物质中单核子势的重排贡献的计算, 研究了三体核力重排贡献对单核子平均势场的动量相关性和密度依赖性的影响. 另外, 还计算了核物质中核子的有效质量并着重讨论了三体核力重排效应的影响. 结果表明: 三体核力对单核子势的重排贡献具有排斥性, 而且三体核力的重排效应随动量和密度的增加而迅速增强; 在高密度和高动量区域这一排斥贡献具有很强的动量相关性并起到了减弱单核子势吸引性和增强单核子势动量相关性的重要作用, 有助于澄清非相对论性BHF平均势场在高密度和高动量区域吸引性过强和动量相关性过弱的问题.  相似文献   

7.
左维  徐忠锋 《物理学报》2007,56(1):129-136
在同位旋相关的Brueckner理论框架内, 研究了三体核力重排贡献对同位旋对称势及其动量相关性和密度依赖性的影响,特别是研究了三体核力重排效应对于非对称核物质中质子和中子有效质量同位旋劈裂的影响. 结果表明: 三体核力重排效应对质子和中子单核子势均具有排斥性,而且其贡献随动量和密度增加而迅速增大. 在低密度区域,三体核力重排贡献对同位旋对称势的影响相当小,然而随着密度的升高,三体核力重排效应的贡献显著增强. 在高密度区域,三体核力重排效应使得同位旋对称势明显增大,而且当密度足够高时,三体核力重排贡献甚至导致对称势的动量相关性质发生改变. 三体核力的重排效应对核子有效质量同位旋依赖性的影响是使高密度丰中子核物质中质子-中子有效质量同位旋劈裂的幅度显著减小.  相似文献   

8.
The finite temperature Brueckner-Hartree-Fock (FTBHF) approach is extended by introducing a microscopic three-body force. Within the extended approach, the three-body force effects on the equation of state of hot nuclear matter and its temperature dependence have been investigated. The critical properties of the liquid-gas phase transition of hot nuclear matter have been calculated. It is shown that the three-body force provides a repulsive contribution to the equation of state of hot nuclear matter. The repulsive effect of the three-body force becomes more pronounced as the density and temperature increase and consequently inclusion of the three-body force contribution in the calculation reduces the predicted critical temperature from about 16MeV to about 13MeV. By separating the contribution originated from the 2σ-exchange process coupled to the virtual excitation of a nucleon-antinucleon pair from the full three-body force, the connection between the three-body force effect and the relativistic correction from the Dirac-Brueckner-Hartree-Fock has been explored. It turns out that the contribution of the 2σ-NN part is more repulsive than that of the full three-body force and the calculated critical temperature is about 11MeV if only the 2σ-NN component of the three-body force is included which is lower than the value obtained in the case of including the full three-body force and is close to the value predicted by the Dirac-Brueckner-Hartree-Fock (DBHF) approach. Our result provides a reasonable explanation for the discrepancy between the values of critical temperature predicted from the FTBHF approach including the three-body force and the DBHF approach.  相似文献   

9.
We investigate the equation of state of asymmetric nuclear matter and its isospin dependence in various spin-isospin ST channels within the framework of the Brueckner-Hartree-Fock approach extended to include a microscopic three-body force(TBF) . It is shown that the potential energy per nucleon in the isospinsinglet T = 0 channel is mainly determined by the contribution from the tensor SD coupled channel. At high densities,the TBF effect on the isospin-triplet T = 1 channel contribution turns out to be much larger than that on the T =0 channel contribution. At low densities around and below the normal nuclear matter density,the isospin dependence is found to come essentially from the isospin-singlet SD channel and the isospin-triplet T = 1 component is almost independent of isospin asymmetry. As the density increases,the T = 1 channel contribution becomes sensitive to the isospin asymmetry and at high enough densities its isospin dependence may even become more pronounced than that of the T = 0 contribution. The present results may provide some microscopic constraints for improving effective nucleon-nucleon interactions in a nuclear medium and for constructing new functionals of effective nucleon-nucleon interaction based on microscopic many-body theories.  相似文献   

10.
在扩展的Brueckner-Hartree-Fock (BHF)理论框架下, 采用Argonne V14 两体相互作用势研究了对称核物质中核子-核子散射的总截面和微分截面, 分别讨论了三体核力(TBF)重排效应和基态关联效应对全同和非全同核子散射截面的影响。 计算表明: 低动量区域的基态关联效应会导致介质中核子-核子散射截面的增大; 而随着密度的增加,TBF重排效应的逐渐加强会减小介质中的核子-核子散射截面。 The nucleon nucleon cross sections in symmetric nuclear matter were investigated in the framework of the extended Brueckner-Hartree-Fock(BHF) approach with Argonne V14 two body interaction. The influences of the ground state correlation and the rearrangement contribution of the three body force (TBF) on the cross section have been obtained and discussed separately for identical and non identical nucleon collisions. It is shown that the magnitudes of the cross section are increased by the effects of the ground state correlation in low momentum transfers,and are suppressed in medium with increasing density when the rearrangement contribution of the TBF force is considered.  相似文献   

11.
We assess the theoretical uncertainties on the total charm cross section. We discuss the importance of the quark mass, the scale choice and the parton densities on the estimate of the uncertainty. We conclude that due to the small charm quark mass, which amplifies the effect of varying the other parameters in the calculation, the uncertainty on the total charm cross section is difficult to quantify.  相似文献   

12.
We have calculated the nucleon effective mass in symmetric nuclear matter within the framework of the Brueckner-Bethe-Goldstone (BBG) theory, which has been extended to include both the contributions from the ground-state correlation effect and the three-body force (TBF) rearrangement effect. The effective mass is predicted by including the ground-state correlation effect and the TBF rearrangement effect, and we discuss the momentum dependence and the density dependence of the effective mass. It is shown that the effect of ground state correlations plays an important role at low densities, while the TBF-induced rearrangement effect becomes predominant at high densities.  相似文献   

13.
In a three-body model with Coulomb interactions the Faddeev equations for the Alt-Grassberger-Sandhas transition operators are used to find the leading term of the neutron-transfer amplitude near the exchange singularity in the cos plane. We derive formulae containing three-body Coulomb effects for the renormalization of the second-order exchange pole in the calculation of observables, such as the cross section and polarizations.  相似文献   

14.
H. Sadeghi 《Few-Body Systems》2008,44(1-4):149-151
We have evaluated some observables of n-d systems by using pionless effective field theory (EFT( ${\not}\pi$ )) and insertion of the three-body force up to next-to-next to leading order (N2LO). The evaluated data has been compared with experiment and a three-nucleon calculation of the total cross section with modern realistic two- and three-nucleon force AV18/UrbIX potential models.  相似文献   

15.
We assess the theoretical uncertainties on the total heavy-quark cross section. We discuss the importance of the quark mass, the choice of the scale, the number of light flavors and the parton densities on the estimate of the uncertainty. At first glance, the uncertainty bands on the total charm cross sections obtained by integrating the FONLL inclusive cross section and by integrating the partonic total cross sections appear to be incompatible. We explain how this apparent difference arises and describe how the two results can be reconciled. The small mass of the charm quark amplifies the effect of varying the other parameters in the calculation, making the uncertainty on the total charm cross section difficult to quantify. On the other hand, the bottom-quark total cross section is under much better theoretical control, and differences between the two approaches are small.  相似文献   

16.
We have calculated and compared the three-body force effects on the properties of nuclear matter under the gap and continuous choices for the self-consistent auxiliary potential within the Brueckner-Hartree-Fock approach by adopting the Argonne V18 and the Bonn B two-body potentials plus a microscopic three-body force (TBF). The TBF provides a strong repulsive effect on the equation of state of nuclear matter at high densities for both the gap and continuous choices. The saturation point turns out to be much closer to the empirical value when the continuous choice is adopted. In addition, the dependence of the calculated symmetry energy upon the choice of the self-consistent auxiliary potential is discussed.  相似文献   

17.
Brueckner calculations including a microscopic three-body force have been extended to isospin-asymmetric nuclear matter. The effects of the three-body force on the equation of state and on the single-particle properties of nuclear matter are discussed with a view to possible applications in nuclear physics and astrophysics. It is shown that, even in the presence of the three-body force, the empirical parabolic law of the energy per nucleon vs. isospin asymmetry β = (N - Z)/A is fulfilled in the whole asymmetry range 0≤β≤1 up to high densities. The three-body force provides a strong enhancement of the symmetry energy which increases with density in good agreement with the predictions of relativistic approaches. The Lane's assumption that proton and neutron mean fields linearly vary vs. the isospin parameter is violated at high density due to the three-body force, while the momentum dependence of the mean fields turns out to be only weakly affected. Consequently, a linear isospin split of the neutron and proton effective masses is found for both cases with and without the three-body force. The isospin effects on multifragmentation events and collective flows in heavy-ion collisions are briefly discussed along with the conditions for direct URCA processes to occur in the neutron star cooling. Received: 18 February 2002 / Accepted: 16 May 2002  相似文献   

18.
利用Brueckner-Hartree-Fock方法,计算了β稳定中子星物质的状态方程以及三体核力的影响,特别是研究了三体核力对中子星物质中K介子凝聚的影响. 结果表明三体核力对β稳定中子星物质中出现K介子凝聚的临界密度以及中子星物质中各种粒子所占的比例均有重要影响. 三体核力的主要作用是降低了中子星物质中出现K介子凝聚的临界密度并使K凝聚相中的核物质更加接近于对称核物质.  相似文献   

19.
ANG Pei  ZUO Wei 《中国物理C(英文版)》2014,38(8):084102-084102
We have calculated and compared the three-body force effects on the properties of nuclear matter under the gap and continuous choices for the self-consistent auxiliary potential within the Brueckner-Hartree-Fock approach by adopting the Argonne V18 and the Bonn B two-body potentials plus a microscopic three-body force (TBF). The TBF provides a strong repulsive effect on the equation of state of nuclear matter at high densities for both the gap and continuous choices. The saturation point turns out to be much closer to the empirical value when the continuous choice is adopted. In addition, the dependence of the calculated symmetry energy upon the choice of the self-consistent auxiliary potential is discussed.  相似文献   

20.
The superposition of effective interactions is studied by a cluster approach to the pion-nucleus potential with particular emphasis on the treatment of the Pauli principle between the clusters. The model is based on the formalism of Kerman, McManus, and Thaler and constructs the pion-nucleus interaction by a superposition procedure of pion-cluster interactions in the framework of the fish-bone model. The second-order contribution due to excitations of the relative motion between the clusters has been taken into account as well as true absorption. A test calculation of +_20 scattering with the cluster approach reproduces the gross structure of the differential elastic cross section and the total non-elastic cross section of conventional calculations quite well. Furthermore, it is confirmed that the three-body Pauli interaction is negligible also in the case of a realistic and rather complicated pion-nucleus interaction thus justifying the usual folding approach. The rotational bands contribute about 10% to the cross sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号