首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
As one of the most popular nanocrystals (NCs), aqueous CdTe NCs have very weak green emission under conventional synthesis conditions. In this work, we report the first example of blue‐emitting CdTe NCs directly synthesized in aqueous solution by slowing down the growth rate after nucleation. The key for the synthesis is the optimization of NC growth conditions, namely pH range of 7.5 to 8.5, TGA/Cd ratio of 3.6, Cd/Te ratio of 10, and Te concentration of 2×10?5 mol/L, to get a slow growth rate after nucleation. The as‐prepared blue‐emitting CdTe NCs have small size (as small as 1.9 nm) and bright emission [with 4% photoluminescence quantum yield (PL QY) at 486 nm and 17% PLQY at 500 nm]. Transmission electron microscopy (TEM) images of the as‐prepared CdTe show monodispersed NCs which exhibit cubic zinc blend structure. Moreover, time‐resolved PL decay and X‐ray photoelectron spectroscopy (XPS) results show the as‐prepared NCs have better surface modification by ligand, which makes these luminescent small CdTe NCs have higher photoluminescence quantum yield, compared with NCs synthesized under conventional conditions.  相似文献   

2.
A modified method to prepare high-quality thiol-capped CdTe nanocrystals (NCs) was reported in this paper. The experimental results showed that the different molar ratios of the ligands (thioglycolic acid) to monomers (Cd2+ ions) in the precursor solution played an important role in the photoluminescence (PL) quantum yield (QY) of the as-prepared CdTe NCs. When [ligand]/[monomer] = 1.2, the maximum fluorescent emission peak appeared in the orange-red window, and the PL QY increased up to 50% at room temperature without any postpreparative treatment. In the meantime, suitable reaction conditions were in favor of the optimization of the surface structure of NCs, resulting in the relatively high PL QY from green to red. In addition, some differences between hydrothermal synthesis and traditional aqueous synthesis of CdTe NCs were discussed.  相似文献   

3.
The II-VI compound semiconductor CdTe was electrodeposited on InP(100) surfaces using electrochemical atomic layer epitaxy (EC-ALE). CdTe was deposited on a Te-modified InP(100) surface using this atomic layer by atomic layer methodology. The deposit started with formation of an atomic layer of Te on the InP(100) surface, as Cd was observed not to form an underpotential deposition (UPD) layer on InP(100), although it was found to UPD on Te atomic layers. On the In-terminated 'clean' InP(100) surface, Te was deposited at -0.80 V from a 0.1 mM solution of TeO2, resulting in formation of a Te atomic layer and some small amount of bulk Te. The excess bulk Te was then removed by reduction in blank solution at -0.90 V, leaving a Te atomic layer. Given the presences of the Te atomic layer, it was then possible to form an atomic layer of Cd by UPD at -0.58 V to complete the formation of a CdTe monolayer by EC-ALE. That cycle was then repeated to demonstrate the applicability of the cycle to the formation of CdTe nanofilms. Auger spectra recorded after the first three cycles of CdTe deposition on InP(100) were consistent with the layer-by-layer CdTe growth. It is interesting to note that Cd did not form a UPD deposit on the In-terminated InP(100) surface and only formed Cd clusters at an overpotential. This issue is probably related to the inability of the Cd and In to form a stable surface compound.  相似文献   

4.
The improved properties of CdTe nanocrystals (NCs) synthesized by hydrothermal method were introduced. The experimental results indicated that the NCs properties could be dramatically influenced by means of changing Cd‐to‐Te molar ratio (the molar ratio of CdCl2 and NaHTe in the precursor) of the MPA‐capped CdTe NCs. With the increase of the ratio from 2:1 to 10:1, the formation time of near‐infrared‐emitting CdTe NCs was shortened. In particular, high Cd‐to‐Te molar ratio brought about MPA‐capped CdTe NCs of superior radical oxidation‐resistance and photostability. As a result, the optimum ratio was found to be 8:1 or 10:1 in the study in order to efficiently attain stable, water‐dispersed CdTe NCs.  相似文献   

5.
"Using Te powder as a tellurium source and Na2S as a sulfur source, core-shell CdTe/CdS NPs were synthesized at 50 oC. UV-visible and photoluminescence (PL) spectra were used to probe the effect of CdS passivation on the CdTe quantum dots. As the thickness of CdS shell increases, there is a red-shift in the optical absorption spectra, as well as the PL spectra. The broadening absorption peaks and PL spectra indicate that the size distributions of CdTe/CdS NPs widen increasingly with the increase of CdS coverage. The PL spectra also show that the fluorescence intensity of CdTe QDs will increase when the particles are covered with CdS shell with ratio of S/Te less than 1.0, otherwise it will decrease if the ratio of S/Te is larger than 1.0. Furthermore, the (CdTe/CdS)@SiO2 particles were prepared using a water-in-oil microemulsion method at room temperature in which hydrolysis of tetraethyl orthosilicate leads to the formation of monodispersed silica nanospheres. The obtained (CdTe/CdS)@SiO2 particles show bright photoluminescence with their fluorescence intensity being enhanced 18.5% compared with that of CdTe NPs. TEM imaging shows that the diameter of these composite particles is 50 nm. These nanoparticles are suitable for biomarker applications since they are much smaller than cellular dimensions."  相似文献   

6.
以亚碲酸钠为碲源,硼氢化钠为还原剂,一步合成了巯基丁二酸(MSA)稳定的CdTe量子点.研究了反应液pH值、镉与碲的摩尔比及镉与巯基丁二酸的摩尔比等实验条件对CdTe量子点体系荧光量子产率的影响,并用荧光光谱、X射线粉末衍射及透射电子显微镜等对其进行了表征.结果表明,CdTe量子点具有闪锌矿结构,形貌呈球状;在pH=1...  相似文献   

7.
A simple and convenient method has been developed for synthesis of water‐soluble CdTe quantum dots (QDs) under ambient atmospheric conditions. In contrast to the traditional aqueous synthesis, green to red emitting CdTe QDs were prepared by using TeO2 to replace Te or Al2Te3 as tellurium source in this method. The influences of experimental variables, including pH value, 3‐mercaptopropionic acid (MPA)/Cd and Te/Cd molar ratios, on the emission peak and photoluminescence (PL) quantum yield (QY) of the obtained CdTe QDs have been systematically investigated. Experimental results indicate that green to red emitting CdTe QDs with a maximum photoluminescence quantum yield of 35.4% can be prepared at pH 11.3 and n(Cd):n(Te):n(MPA)=1:0.1:1.7.  相似文献   

8.
采用电化学方法产生的H2Te为碲源(Te2-),快速合成了水溶性强荧光的CdTe量子点.该方法具有操作简单、安全、快速廉价和可大量制备等优点.合成过程中考察了合成温度,pH值和配体比例对制备CdTe量子点的影响.在最优化的实验条件下,电化学方法合成的巯基丙酸配位的CdTe荧光量子产率可达到55%;通过紫外可见光谱(UV...  相似文献   

9.
A novel route has been developed for the synthesis of l-cysteine (Cys)-capped CdTe quantum dots (QDs) in an aqueous medium. Compared with previous reports, this synthesis was carried out in air atmosphere with one pot by using TeO2 to replace Te or Al2Te3 as tellurium source. The mechanism for the formation of CdTe QDs is elucidated. The influences of various experimental variables on the luminescent properties of the obtained CdTe QDs have been systematically investigated, including refluxing time, pH value, Cd/Cys and Cd/Te molar ratios. Furthermore, the obtained QDs were characterized by Fourier transform infrared spectra, X-ray powder diffraction, and transmission electron microscopy, respectively. The results demonstrate that the obtained QDs have zincblende crystal structure with a sphere-like shape. Under the optimized experimental conditions, green- to yellow-emitting CdTe QDs with a maximum photoluminescence quantum yield of 14.6 % can be obtained.  相似文献   

10.
3-Mercaptopropionic acid (MPA)-capped CdTe nanocrystals (NCs) were synthesized in aqueous medium, and their interaction with cysteine (Cys) and homocysteine (Hcy) was studied by steady-state and time-resolved fluorescence spectra at different pH. At 6.4?<?pH?<?8.0, the fluorescence of CdTe NCs can be effectively enhanced by Cys and Hcy. While pH?>?9.6, only Cys quenches the fluorescence of the CdTe NCs, no fluorescence changes are observed for Hcy. Mechanism study shows that these pH manipulating fluorescence responses can be attributed to the following two reasons: first, both the thiol–thiolate equilibrium of Cys (Hcy) and the number of undercoordinated NCs surface sites capped with dual coordinated ligands are strong pH-dependent; second, different thiol-containing amino acids, with different redox energy level, can lead to distinguishable fluorescence responses of NCs. Based on these unique fluorescence responses, the possibilities of developing a sensitive detecting technique for Cys/Hcy and Cys through pH modulation can be explored.  相似文献   

11.
The results of the influence of electrodeposition conditions on the structural, compositional, optical, and photoelectrochemical properties of CdTe thin films deposited in one-step electrochemical method are presented. The CdTe films were prepared electrochemically from aqueous acidic solution with low ratios of Cd2+ ions to Te(IV) ions concentration. Instead of commonly used TeO2, water-soluble Na2TeO3 was used as a source of tellurium ions. The cathodic deposition of CdTe was performed at different constant potentials from solutions containing different cadmium and tellurium ions concentration. As-deposited CdTe thin films were studied by different analytical techniques. The X-ray photoelectron spectroscopy spectra exhibited CdTe formation on the electrode with some amount of tellurium oxides and cadmium oxides. The best quality CdTe deposits, free of TeO2, were formed in bath containing excess of Cd2+ ions and at the potential of ?0.65 V vs. saturated calomel electrode, slightly more positive than E eq of Cd/Cd2+ system. Structural X-ray diffraction studies revealed polycrystallinity of deposits with the highest content of the (111)-oriented cubic (111) form. Optical band gap energy values were found in the range from 1.36 to 1.6 eV for CdTe films prepared at various synthesis conditions. The preliminary photoelectrochemical studies have shown that the variation of the deposition potential as well as bath composition leads to the formation of p- or n-type CdTe films. As-deposited CdTe films were not stable in polysulfide solution under illumination.  相似文献   

12.
Time dependent, cathodic electrodeposition of ultrathin CdTe and Te films has been studied in 50 mM H(2)SO(4) + 1 mM CdSO(4) + 0.1 mM TeO(2) solutions at room temperature under potential control using electrochemical atomic force microscopy (EC-AFM). The films were also characterized electrochemically and with X-ray diffraction. The growth mechanism and the composition of the films depends on the applied potentials. Island-like growth mode was observed for CdTe films when the deposition potential was -0.35 V (SHE). At a more positive deposition potential of 0.138 V (SHE), Cd was not co-deposited into the film but affected the dynamic growth mode of the deposit. At this voltage smooth Te films were obtained. Depending on the applied potential, Cd acts either as a co-deposition element for CdTe film growth, or as a mediator for layer-by-layer growth of Te films.  相似文献   

13.
The aqueous synthesis of thiol-stabilized semiconductor CdTe colloidal nanocrystals has been revisited. We found optimal conditions for the synthesis of high-quality CdTe NCs through a study of the influence of the initial conditions (structure and concentration of Cd-thiol complexes) on the quality of the CdTe nanocrystals. A numerical calculation shows a clear correlation between the concentration of CdL (where L is (SCH(2)COO)(2-)) in the initial solution and the photoluminescence quantum efficiency of the CdTe nanocrystals.  相似文献   

14.
In this study, we demonstrate a new insight into the growth stage of aqueous semiconductor nanocrystals (NCs); namely, that the experimental variable‐dependent growth rate and photoluminescence quantum yields (PLQYs) are understandable according to electrostatics. In this context, the aqueous NCs possess (from core outwards) an inorganic core, ligand layer, adsorbed layer, and a diffuse layer. The presence of an electric double‐layer not only makes the NCs dispersible in the colloidal solution, but also governs the migration of monomers and monomer adsorption on the NC surface. To maintain NC growth, monomers need to migrate through the double‐layer. Consequently, the nature of the diffuse layer influences the ability of monomer diffusion and hence the growth rate of NCs. Systematic studies reveal that the experimental variables, including precursor concentrations, pH of the solution, additional NaCl concentrations, ratio of Cd to ligand, and the nature of the ligands significantly govern the nature of the NC electric double‐layer. The experimental variables, which reduce the thickness of the diffuse layer, benefit from monomer diffusion and a rapid growth of NCs. However, on the other hand, the diffuse layer also presents a charge‐selective transfer of Cd monomers. The neutral monomers, such as the complex of Cd2+ and 3‐mercaptopropionic acid (MPA) with 1:1 molar ratio [Cd(MPA)], migrate through the diffuse layer more easily than the charged ones [Cd(MPA)22? or Cd(MPA)34?], thus facilitating the growth of NCs. The nature of the adsorbed layer inside the diffuse layer, defined as the assumed interface of solid NCs and the liquid environment, also affects the growth rate and especially the PLQYs of NCs through the adsorption and coalescence of monomers on this interface. Strong interaction between the adsorbed layer and Cd monomers provides the opportunity to accelerate NC growth and to obtain NCs with high PLQYs.  相似文献   

15.
Te,CdTe,HgCdTe的电沉积及其成核机理   总被引:2,自引:0,他引:2  
应用自装微机联用恒电位系统研究了在玻璃碳或铁电极上Te、CdTe、HgCdTe的电沉积及其电结晶成核机理。结果表明,在酸性溶液中,HTeO_2~+的阴极还原符合4电子还原机理,其电结晶生长表现为由HTeO_2~+扩散控制的三维瞬时成核机理;CdTe沉积层的形成是亚碲酸还原的延续,其电结晶成核机理因电位阶跃值、沉积温度及溶液pH值的改变而由HTeO_2~+扩散控制的三维瞬时成核转变为二维瞬时成核机理;对HgCdTe,其电沉积过程的动力学步骤可设想为: Hg~(2+)+2e—→Hg,HTeO_2~++3H~++4e—→Te+2H_2O xHg+Te—→Hg_2Te,Hg_2Te+(1—x)Cd~(2+)+2(1—x)e—→Hg_2Cd_(1-2)Te 相关的结晶生长除受各种实验因素影响外,还与CdTe的成核过程有关。在本文实验条件下,大体遵循二维瞬时成核机理。  相似文献   

16.
Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 composites were synthesized by a sol-gel method without the exchange of surface ligands.The phase structure of CdTe NCs was investigated by X-ray diffractometry.For comparison,some characterizations were done for both the CdTe NCs and the composites.CdTe NCs and CdTe/SiO2 composites were characterize...  相似文献   

17.
利用表面活性剂双层修饰技术在水溶性荧光CdTe纳米晶表面先后包覆了双十八烷基二甲基溴化铵和十二烷基硫酸钠, 从而在纳米晶外表面引入—SO-4反应位点, 以—SO-4为活性中心进一步制备了包覆CdTe纳米晶的BaSO4复合荧光微球. 通过扫描电子显微镜、透射电子显微镜、共聚焦荧光显微镜和X射线粉末衍射等方法确定了复合微球的尺寸及组成. 由于BaSO4的保护, CdTe-BaSO4复合微球荧光的耐酸性比CdTe原液的提高明显.  相似文献   

18.
巯基乙胺稳定的水溶性CdTe纳米粒子的合成与表征   总被引:9,自引:0,他引:9  
用巯基乙胺(cysteamine,CA)作为稳定剂,在水相中合成了发光可调的CdTe半导体纳米粒子。这些巯基乙胺稳定的CdTe纳米粒子表面带有大量的正电荷。实验结果表明,稳定剂与Cd的比例以及pH等实验条件对CdTe纳米粒子体系的荧光发射强度影响较大。在pH为6.1时,纳米粒子体系在橙红波段的荧光量子产率达到了9%左右。控制实验条件,合成了各种尺寸的CdTe纳米粒子,荧光发射光谱在520~600 nm范围连续可调。分别用X射线光电子能谱(XPS),透射电子显微镜(TEM),X射线衍射仪(XRD),红外吸收  相似文献   

19.
A novel aqueous route for the synthesis of high-quality CdTe nanocrystals(NCs) is presented in this article. With both glutathione(GSH) and cysteine[n(GSH):n(cysteine)=1:3] as stabilizers, high-quality CdTe NCs with controllable photoluminescence(PL) wavelength from 500 to 630 nm can be prepared within 4 h. As-prepared CdTe NCs show higher photoluminescence quantum yields(PLQY) compared with CdTe NCs prepared via other aqueous methods. When the fluorescent emission peak appeared in orange-red window, the PLQY reaches 70% or above at room temperature without any post-preparative treatment.  相似文献   

20.
水相中CdTe纳米晶的制备及其光学性质   总被引:1,自引:0,他引:1  
用不同稳定剂(巯基乙酸(TGA)、巯基丙酸(MPA)、L-半胱氨酸(L-Cys)、3-巯基-1,2-丙二醇(TG))在水相中制备了CdTe纳米晶, 并用透射电子显微镜(TEM)、X射线光电子能谱(XPS)和X射线粉末衍射(XRD)等技术对其进行了表征. 研究了不同水相合成条件对CdTe纳米晶光学性质的影响, 结果表明, n(Cd):n(Te)、溶液pH值、回流时间以及稳定剂的性质, 对纳米晶的光学性质具有显著影响. 制得的CdTe纳米晶发射峰窄且对称(半高全宽达38 nm), 用不同稳定剂制备的纳米晶发光量子效率有所不同, 用不同的激发波长对纳米晶进行激发时, 发射峰并未表现出明显的移动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号