首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
One metastable linkage nitrosyl isomer can be generated in [Pt(NH(3))(4)Cl(NO)]Cl(2) by irradiation with light in the red spectral range. The potential energy barrier for the thermal relaxation of the metastable state to the ground state has an amount of E(A) = (0.27 +/- 0.03) eV. The decay follows the Arrhenius law and E(A) is independent of temperature. At room temperature the metastable state has a lifetime of tau = 3.8 x 10(-5) s after generation by pulsed laser illumination. Below T = 100 K about 30% linkage NO isomers can be generated in a powder sample by irradiation with lambda = 658 nm. DFT calculations demonstrate the rotation of the NO ligand from Pt-N-O to Pt-O-N as a unique linkage isomer. Consequently, only one new nu(NO) stretching vibration is detected with a shift from 1673 cm(-1) to 1793 cm(-1) by 120 cm(-1), to higher frequencies in good agreement with the DFT calculations. In the metastable state new electronic absorption bands are observed in the blue-green and near infrared spectral range. The metastable state can be optically accessed via a (5d + pi(NO)) -->pi*(NO) transition. [Pt(NH(3))(4)Cl(NO)]Cl(2) is diamagnetic with a Pt(5d(8)) configuration and thus represents the first {MNO}(8) complex with experimental evidence for a light-induced nitrosyl linkage isomer.  相似文献   

2.
The structural and spectroscopic characteristics of the synthesized structurally novel compound 4-chloro-6-methylquinoline-2(1H)-one (4C6MQ) and its isomer 4-chloro-8-methylquinoline-2(1H)-one (4C8MQ) have been examined by means of experimental and computational quantum chemical methods like density functional theory (DFT). The crystal structure of the 4C6MQ compound has been brought to light by single-crystal x-ray diffraction (SCXRD) method which consists of two independent molecules (A and B) in the asymmetric unit with similar conformations. Both the isomer compounds are characterized spectroscopically by FTIR, FT-Raman, UV-Vis, and NMR spectrum and compared with DFT results. The geometries of the isomer compounds have been optimized by using DFT/B3LYP method with the 6-311G++(d,p) basis sets. From the optimized geometry of the compounds, geometric parameters (bond lengths, bond angles, and torsion angles); vibrational analysis; chemical shifts; and electronic absorption of the isomer compounds have been computed and compared with the experimental result. The detailed assignments of vibrational wave numbers have been prepared based on potential energy distribution (PED) which was carried out in the VEDA4 program. In addition, natural bonding orbital analysis, frontier molecular orbital, and molecular electrostatic potential have been explained theoretically. The in silico (absorption, distribution, metabolism, excretion and toxicity) studies were analyzed to identify the potential drug likeliness of the isomer compounds. The implications of the inhibitory activity of isomer compounds against DNA gyrase and lanosterol 14 α-demethylase enzyme by molecular docking are discussed. Further, the isomer compounds were screened for their antibacterial and antifungal activities.  相似文献   

3.
The attachment of methyl methacrylate (MMA) on Si(100)-2x1 was investigated using high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and density functional theory (DFT) calculations. The HREELS spectra of chemisorbed MMA show the disappearance of characteristic vibrations of C=O (1725 cm(-1)) and C(sp(2))-H (3110, 1400, and 962 cm(-1)) coupled with the blue shift of the C=C stretching mode by 34 cm(-1) compared to those of physisorbed molecules. These results clearly demonstrate that both C=C and C=O in MMA directly participate in the interaction with the surface to form a SiCH(2)C(CH(3))=C(OCH(3))OSi species via a [4+2]-like cycloaddition. This binding configuration was further supported by XPS, UPS, and DFT studies.  相似文献   

4.
WO3/ZrO2 catalysts prepared from Zr(OH)4 and crystallized ZrO2 have been characterized by means of XRD, LRS (qualitative and quantitative), and the specific sufrace area has been measured. The influence of the preparation method, the contents of WO3 in the samples and the calcination tempearture on the specific surface areas of the samples, the phase of support and the structural states of active component has been studied. The results show: (1) WO3 can disperse on ZrO2 as a monolayer; (2) WO3 dispersed on Zr(OH)4 as a monolayer retards the crystalline growth of the support on calcination, makes it crystallizing into a metastable tetragonal modification, and prevents the inter- crystalline sintering between the crystallites of ZrO2. These factors would result in an increase in the specific surface area of WO3/ZrO2 prepared from Zr(OH)4. As the content of WO3 in the sample comes up to its monolayer capacity, this effect is displayed most fully. A chemical reaction can occur between WO3 and Zr(OH)4 (or the tetragonal ZrO2) at a high temperature(800℃),producing some superacid sites on the surface. By these views, the main experimental facts published in the literatures can been interpreted satisfactotily.  相似文献   

5.
Light-induced metastable linkage isomers of trans-[Ru(NH(3))(4)Cl(SO(2))]Cl and trans-[Ru(NH(3))(4)(H(2)O)(SO(2))](C(6)H(5)SO(3))(2) have been identified for the first time using photocrystallographic methods. In both linkage isomers the SO(2) ligand is side bound, but the Ru-O and Ru-S distances are considerably longer and almost equal in the trans-H(2)O isomer. DFT calculations confirm that both isomers correspond to minima on the ground-state potential energy surface and also predict the existence of a second oxygen-bound isomer for both compounds. The decay of the light-induced species has been studied by both DSC and IR. Activation energies for the thermal back-reaction, as derived from the temperature-dependent disappearance of light-induced IR bands, are 50.0 and 58.4 kJ/mol for the two isomers, which is larger than the corresponding numbers for photoinduced side-bound nitrosyl linkage isomers.  相似文献   

6.
The strongest and most robust carborane acid, H(CHB11Cl11), has a monomeric structure in the gas phase. IR spectra show two nuH-Cl bands at 2357(br) and 2066(br) cm-1 which, together with DFT calculations, indicate the coexistence of at least two isomers. The acidic proton bridges adjacent chlorine atoms with asymmetric Cl-H...Cl hydrogen bonding. The 12,7 isomer is more stable than the 7,8 isomer. These monomers can be condensed into an amorphous solid phase but are metastable. They quickly decay, first to an amorphous dimeric structure, then to a crystalline polymeric phase that has been characterized by X-ray crystallography. In the polymeric structure, the acidic proton bridges chlorine atoms from the 7-11 positions of carborane anions in linear chains. The dimeric phase (nuCl-H...Cl = 1100-2200 cm-1) and polymeric phase (nuasClHCl ca. 1100 cm-1, v broad) have more nearly symmetrical, low-barrier H-bonding. These findings have implications for the dependency of acid strength upon phase.  相似文献   

7.
The interaction of NaI with amorphous solid water (ASW) and methanol (MeOH) has been investigated with metastable impact electron spectroscopy (MIES), UPS(HeI), and temperature programmed desorption (TPD). We have studied the electron emission from the ionization of the highest-lying states of H(2)O, CH(3)OH, and of 5pI. We have prepared NaI layers on ASW (MeOH) films at about 105 K and annealed them up to about 200 K. Surface segregation of iodide is observed in ASW, as predicted for NaI aqueous solutions. On the other hand, surface segregation is not observed in MeOH, again as predicted for the interaction of NaI with liquid methanol. Electronic properties (ionization potentials, optical band gaps) and water binding energies are reported and are analyzed on the basis of available DFT results for hydrated NaI clusters.  相似文献   

8.
Control of O2 versus CO binding in myoglobin (Mb) is tuned by a distal histidine residue through steric and H-bonding interactions. These interactions have been evaluated via Car-Parrinello DFT calculations, whose efficiency allows full quantum mechanical treatment of the 13 closest residues surrounding the heme. The small (8 degrees ) deviation of the Fe-C-O bond angle from linearity results from the steric influence of a distal valine residue and not the distal histidine. H-bond energies were evaluated by replacing the distal histidine with the non-H-bonding residue isoleucine. Binding energies for CO and O2 decreased by 0.8 and 4.1 kcal/mol for MbCO and MbO2, in good agreement with experimental H-bond estimates. Ligand discrimination is dominated by distal histidine H-bonding, which is also found to stabilize a metastable side-on isomer of MbO2 that may play a key role in MbO2 photodynamics.  相似文献   

9.
Photoelectron spectroscopy (PES) and ab initio calculations are combined to investigate the electronic structure of MO(n)- clusters (M = W, Mo; n = 3-5). Similar PES spectra were observed between the W and Mo species. A large energy gap between the first and second PES bands was observed for MO3- and correlated with a stable closed-shell MO3 neutral cluster. The electron binding energies of MO4- increase significantly relative to those of MO3-, and there is also an abrupt spectral pattern change between MO3- and MO4-. Both MO4- and MO5- give PES features with extremely high electron binding energies (>5.0 eV) due to oxygen-2p-based orbitals. The experimental results are compared with extensive density functional and ab initio [CCSD(T)] calculations, which were performed to elucidate the electronic and structural evolution for the tungsten oxide clusters. WO3 is found to be a closed-shell, nonplanar molecule with C3v symmetry. WO4 is shown to have a triplet ground state (3A2) with D2d symmetry, whereas WO5 is found to be an unusual charge-transfer complex, (O2-)WO3+. WO4 and WO5 are shown to possess W-O* and O2-* radical characters, respectively.  相似文献   

10.
Various molecular species are known to form during the photoreaction of C2H4I2 in the gas phase and in solution. We have studied all species involved in this reaction by ab initio and density functional theory (DFT) calculations: Geometries, energies, and vibrational frequencies of C2H4I2, bridged C2H4I*, anti C2H4I*, C4H4, I2, I3-, and the isomer C2H4I-I were calculated. The absorption peaks and oscillator strengths of selected species along the potential energy surface (PES) were calculated using time-dependent DFT and were compared with available experimental results. The calculated PES satisfactorily describes the observed reactions of the photoexcited C2H4I2 molecule. In the gas phase, there is only one reaction pathway: the first C-I bond ruptures followed by a secondary C-I breakage in the haloethyl radical C2H4I*. In solution, by contrast, another reaction channel, which is energetically more favored over the secondary dissociation, is switched on due to a solvation effect: the bridged C2H4I* can bind to the free iodine atom to form a C2H4I-I isomer without any energy barrier. The isomer can then break into C2H4 and I2. The rotational barriers in the gas phase and in solution were also calculated and compared. To provide experimental data on the structure of C2H4I2 in solution, the ground state structure of C2H4I2 in methanol was determined from static X-ray diffraction data using 88 keV (lambda = 0.14 A) X-rays. The structural parameters are compared with those from the theoretical results.  相似文献   

11.
The covalent binding of acrylonitrile (CH(2)=CH-C triple bond N) and the formation of a C=C-C=N structure on Si(100) have been investigated using high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and density functional theory (DFT) calculations. For chemisorbed acrylonitrile, the absence of nu(C triple bond N) at 2245 cm(-1) and the appearance of nu(C=N) at 1669 cm(-1) demonstrate that the cyano group directly participates in the interaction with Si(100), which is further supported by XPS and UPS observations. Our experimental results and DFT calculations unambiguously demonstrate a [2 + 2] cycloaddition mechanism for acrylonitrile chemisorption on Si(100) through the binding of C triple bond N to Si dimers. The resulting chemisorbed monolayer with a C=C-C=N skeleton can serve as a precursor for further chemical syntheses of multilayer organic thin films in a vacuum and surface functionalization for in situ device fabrication.  相似文献   

12.
The interaction of NaCl with solid water, deposited on tungsten at 80 K, was investigated with metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy (UPS) (He I). We have studied the ionization of Cl(3p) and the 1b(1), 3a(1), and 1b(2) bands of molecular water. The results are supplemented by first-principles density functional theory (DFT) calculations of the electronic structure of solvated Cl(-) ions. We have prepared NaCl/water interfaces at 80 K, NaCl layers on thin films of solid water, and H(2)O ad-layers on thin NaCl films; they were annealed between 80 and 300 K. At 80 K, closed layers of NaCl on H(2)O, and vice versa, are obtained; no interpenetration of the two components H(2)O and NaCl was observed. However, ionic dissociation of NaCl takes place when H(2)O and NaCl are in direct contact. Above 115 K solvation of the ionic species Cl(-) becomes significant. Our results are compatible with a transition of Cl(-) species from an interface site (Cl in direct contact with the NaCl lattice) to an energetically favored configuration, where Cl species are solvated. The DFT calculations show that Cl(-) species, surrounded by their solvation shell, are nevertheless by some extent accessed by MIES because the Cl(3p)-charge cloud extends through the solvation shell. Water desorption is noticeable around 145 K, but is not complete before 170 K, about 15 K higher than for pure solid water. Above 150 K the NaCl-induced modification of the water network gives rise to gas phase like structures in the water spectra. In particular, the 3a(1) emission turns into a well-defined peak. This suggests that under these conditions water molecules interact mainly with Cl(-) rather than among themselves. Above 170 K only Cl is detected on the surface and desorbs around 450 K.  相似文献   

13.
利用密度泛函方法(DFT)研究了Mn-Na2WO4/SiO2催化剂表面的活性中心结构.计算表明,在α-方石英的(111)面上,W能以单个或三个桥氧与载体作用形成稳定的四面体配位结构,Mn则能以单个桥氧与载体配位或形成不同结构的氧化物团簇;以单个桥氧担载的[WO4]四面体是最可能的甲烷活化中心.  相似文献   

14.
Single crystal photocrystallographic experiments and solid state Raman spectroscopy have been used to determine the low temperature, metastable structures of the nickel(ii) nitrito complexes [Ni(aep)(2)(η(1)-ONO)(2)] 1#O (aep = 1-(2-aminoethyl)piperidine), [Ni(aem)(2)(η(1)-ONO)(2)] 2#O (aem = 1-(2-aminoethyl)morpholine), and [Ni(aepy)(2)(η(1)-ONO)(2)] 3#O (aepy = 1-(2-aminoethyl)pyrrolidine and where the #O denotes the oxygen-bound nitrito metastable molecule). These linkage isomers of the equivalent nitro complexes [Ni(aep)(2)(η(1)-NO(2))(2)] 1, [Ni(aem)(2)(η(1)-NO(2))(2)] 2 and [Ni(aepy)(2)(η(1)-NO(2))(2)] 3 are formed by LED irradiation at temperatures below 120 K. The behavior of the three complexes upon irradiation is generally similar, but some subtle differences have been observed. From the crystallographic studies all three complexes 1-3 exhibit the endo-nitrito linkage isomer upon irradiation, however, for 3# (a crystal structure that contains components of both 3 and 3#O) an exo-nitrito isomer is also observed. Under conditions of 90-100 K, with blue light, the conversion percentages to the nitrito isomers, 1#O, 2#O and 3#O were 16%, 22% and 30%, respectively. At temperatures below 110 K all three nitrito isomers were stable for over four hours but while 2#O and 3#O could be detected at temperatures down to 30 K, at temperatures below 60 K the metastable structure 1#O appeared to be quenched and only the nitro isomer 1 was identified in the crystal. The solid state Raman spectra for 1#, 2# and 3# confirmed the photocrystallographic results with the nitrito isomers being identified from the O-N-O deformation vibrations.  相似文献   

15.
Black dye (BD), isomer 1 ([Ru(II)(H3-tctpy)(NCS)3](-1), where H3-tctpy = 4,4',4' '-tricarboxy-2,2':6,2' '-terpyridine) is known to be an excellent sensitizer for dye-sensitized solar cells and exhibits a very good near-IR photo response, compared to other ruthenium dyes. Because isothiocyanate is a linear ambidentate ligand, BD has three other linkage isomers, [Ru(H3-tctpy)(NCS)2(SCN)](-1), isomer 2 and 2', and [Ru(H3-tctpy))(SCN)3](-1), isomer 3. In this study, we have calculated the geometry of BD and its isomers by DFT. Further, we have analyzed the bonding in these isomers using NBO methods. TDDFT calculations combined with scalar relativistic zero-order regular approximations (SR-ZORA) have been carried out to simulate the absorption spectra. Calculations have been performed for the isomers both in vacuo and in solvent (ethanol). The inclusion of the solvent is found to be important to obtain spectra in good agreement with the experiment. The first absorption bands are dominated by the metal-to-ligand charge transfer (MLCT) and ligand-to-ligand charge transfer (LLCT).  相似文献   

16.
This work describes a detailed study on the structure and dynamics of pseudooctahedral low-valent complexes of the type [Mo(His-N(epsilon)-R)(eta-2-R'-allyl)(CO)(2)] (His=N(delta),N,O-L-histidinate; R=H, R'=H (1); R=C(2)H(4)CO(2)Me, R'=H (2); R=H, R'=Me (3); R=C(2)H(4)CO(2)Me, R'=Me (4)). These diamagnetic 18-electron complexes were comprehensively characterized spectroscopically and by X-ray crystallography. In the solid state, the (substituted) allyl ligand is in an endo position in all compounds, but it is trans to the His-N(delta) atom in 1 and 2, whereas it is trans to the carboxylate O atom for the 2-Me-allyl compounds 3 and 4. In solution, both isomers are present in a solvent-dependent equilibrium. The third isomer (allyl trans to His-NH(2)) is not spectroscopically observed in solution. This is in agreement with the results from density functional (DFT) computations (BPW 91 functional) for 1 and 3, which predict a considerably higher energy (+6.3 and +5.9 kJ mol(-1), respectively) for this isomer. A likely path for isomerization is calculated, which is consistent with the activation energy determined by variable temperature NMR measurements. At least for 3, the preferred path involves several intermediates and a rotation of the 2-Me-allyl ligand. For the paramagnetic 17-electron congeners, DFT predicts the exo isomer of 3(+) with the 2-Me-allyl ligand trans to the carboxylate O atom to be by far the most stable isomer. For 1(+), an endo-exo equilibrium between the isomers with the allyl ligand trans to the carboxylate O atom is suggested. These suggestions are confirmed by EPR spectroscopy on the electrochemically generated species, which show signals for one- (4) and two- (2) metal-containing compounds. The appearance of the EPR spectra may be rationalized by inspection of the SOMOs from DFT calculations of the species in question. The notion of a metal-centered oxidation is also substantiated by IR spectroelectrochemistry and by UV/Vis spectra of the 17-electron complexes. Upon depleting the metal of electron density, the stretching vibrations of the carbonyl ligands shift more than 100 cm(-1) to higher wavenumbers, and the carbonyl vibration of the metal-coordinated carboxylate shifts by about 50 cm(-1). A color change from yellow to green upon oxidation is observed visually and quantified by the appearance of a new band at 622 nm (2(+)) and 546 nm (4(+)), respectively.  相似文献   

17.
Low temperature infrared spectra of light induced metastable states MS1 and MS2 of the nitroprusside anion in Na(2)[Fe(CN)(5)NO].2H(2)O, isotopically normal and substituted with (15)NO and N(18)O, are presented and discussed. As a consequence of the relatively high population of the MS2 state achieved by further irradiation with 1064 nm light of samples previously irradiated with 488.0 nm light, new bands were seen for the first time, and others, previously reported, were confirmed. The comparison of the spectral data obtained for the FeNO moiety of the isotopically normal as well as of the (15)NO and N(18)O substituted anion with the results of quantum chemical (DFT) calculations support the assignment of the bands which appear after successive irradiations to MS1, the linear Fe(eta(1)-ON) linkage isomer, and to MS2, the side-bound Fe(eta(2)-NO) isomer.  相似文献   

18.
All possible (eta(3)-allyl)palladium complexes (1-4) of the ligand (4S)-[2-(2'-diphenylphosphanyl)phenyl]-4,5-dihydro-4-(2-propyl)-oxazole (L 1) and eta(3)-allyl ligands with one to three phenyl substituents at the terminal allylic centers were synthesized and characterized by X-ray crystal structure analysis and, with respect to allylic isomers, by NMR investigations. Equilibrium geometries, electronic structures, and relative energies of isomeric complexes were computed by restricted Hartree-Fock (RHF) and density functional theory (DFT) calculations; experimentally determined isomer ratios could be reproduced. The results allowed important conclusions to be drawn regarding the mechanism of Pd-catalyzed asymmetric allylic substitutions.  相似文献   

19.
Novel spirophosphoranes (O-cis) that exhibit reversed apicophilicity having an apical carbon-equatorial oxygen array in a five-membered ring showed enhanced reactivity toward nucleophiles such as n-Bu(4)N(+)F(-) or MeLi in comparison with the corresponding stable isomeric spirophosphoranes (O-trans) having an apical oxygen-equatorial carbon configuration. The enhanced reactivity of the O-cis isomer could be explained by the presence of a lower-lying sigma(P)(-)(O(equatorial)) orbital as the reacting orbital in the equatorial plane, whereas the corresponding orbital is a higher-lying sigma(P)(-)(C(equatorial)) in the O-trans isomer. Density functional theory (DFT) calculation on the actual compounds provided theoretical support for this assumption. In addition, we found that the benzylic anion alpha to the phosphorus atom in O-cis benzyl phosphorane is much more stable than that generated from the corresponding O-trans compounds. The experimental results were considered to be due to the n(C) --> sigma(P)(-)(O) interaction in the O-cis anion, and this was confirmed by DFT calculations. Furthermore, the hexacoordinate anionic species derived from the reaction of the benzylic anion from O-cis benzylphosphorane with an aldehyde was also found to be stabilized as compared with analogous species from the corresponding O-trans isomer. The first X-ray structural characterization of a hexacoordinate phosphate intermediate in the Wittig type reaction using pentacoordinate phosphoranes is reported.  相似文献   

20.
Ultraviolet photoelectron spectra (UPS) of C(82) isomers have been calculated using hybrid density functional theory in combination with the Gelius model [Proceedings of the International Conference on Electron spectroscopy, edited by D. A. Shirley (North-Holland, Amsterdam, 1972), p. 311; J. Electron Spectrosc. Relat. Phenom. 5, 985 (1974)]. The calculated UPS spectra are found to be isomer dependent and in good agreement with the experimental counterparts. Near-edge x-ray absorption fine structure (NEXAFS), x-ray photoelectron spectroscopy (XPS), x-ray emission spectroscopy, and the resonant inelastic x-ray scattering (RIXS) spectra of three important isomers [3(C(2)), 6(C(s)), and 9(C(2v))] have also been simulated. Strong isomer dependence has also been found for NEXAFS, XPS, and RIXS spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号