首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We present atomic-resolution images of TiSe\begin{document}$_2$\end{document}, MoTe\begin{document}$_2$\end{document} and TaS\begin{document}$_2$\end{document} single crystals in liquid condition using our home-built scanning tunneling microscopy (STM). By facilely cleaving of single crystals in liquid, we were able to keep the fresh surface not oxidized within a few hours. Using the high-stable home-built STM, we have obtained atomic resolution images of TiSe\begin{document}$_2$\end{document} accompanied with the single atom defects as well as the triangle defects in solution for the first time. Besides, the superstructure of MoTe\begin{document}$_2$\end{document} and hexagonal charge-density wave domain structure in nearly commensurate phase of TaS\begin{document}$_2$\end{document} were also obtained at room temperature (295 K). Our results provide a more efficient method in investigating the lively surface of transition metal dichalcogenides. Besides, the high stable liquid-phase STM will support the further investigations in liquid-phase catalysis or electrochemistry.  相似文献   

2.
Photocurable, ternary‐component mixtures of a 1:1 molar multifunctional thiol–ene (trithiol and triallyl ether) blend and a 16‐functional acrylate based monomer have been photopolymerized, and the final film properties of the ternary crosslinked networks have been measured. The photopolymerization kinetics, morphology, and mechanical and physical properties of the films have been investigated with real‐time infrared, atomic force microscopy, and dynamic mechanical analysis. The photopolymerization process is a combination of acrylate homopolymerization and copolymerizations of thiol with allyl ether and acrylate functionalities. The tan δ peaks of the photopolymerized ternary systems are relatively narrow and tunable over a large temperature range. The morphology is characterized by a distinct phase‐separated nanostructure. The photocured thiol–ene/acrylate ternary systems can be made to exhibit good mechanical properties with enhanced energy absorption at room temperature by the appropriate selection of each component concentration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 822–829, 2007.  相似文献   

3.
Fluorogens with aggregation-induced emission (AIE) characteristics have recently been widely applied for studying biological events, and fluorogens with "smart" properties are especially desirable. Herein, we rationally designed and synthesized a biotinylated and reduction-activatable probe (Cys(StBu)-Lys(biotin)-Lys(TPE)-CBT (\begin{document}$\textbf{1}$\end{document})) with AIE properties for cancer-targeted imaging. The biotinylated probe \begin{document}$\textbf{1}$\end{document} can be actively uptaken by the biotin receptor-overexpressing cancer cells, and then "smartly" self-assemble into nanoparticles inside cells and turn the fluorescence "On". Employing this "smart" strategy, we successfully applied probe \begin{document}$\textbf{1}$\end{document} for cancer-targeted imaging. We envision that this biotinylated intelligent probe \begin{document}$\textbf{1}$\end{document} might be further developed for cancer-targeted imaging in routine clinical studies in the near future.  相似文献   

4.
"To improve the performance of traditional cast iron, trance amount of surface modified nanometer SiC powders were added into the melted iron. The microstructures, the mechanical properties, as well as the wear resistance were investigated. The trace addition of SiC nano-powders were active due to the presence of structural defects arising from the treatment, they were eoient in affecting not only the generation and growth of crystals but also change the morphology of graphite. On the other hand, the addition of SiC nanopowders as heterogeneous seedings in the crystallization of liquid metals lead to the changing of supercooling temperature, so the ratio of ferrite and pearlite was changed. The mechanical characteristics and wear resistance were enhanced as a result of the improved graphite shape and changed matrix composition caused by the trace addition of SiC nanopowders (in amounts of about 0.01% mass). The strengthening mechanism and the free gap between powders were also discussed. It is suggested that the tensile strength, toughness, as well as the wear resistance can be improved simultaneously, which indicates the novel strengthening technology by trace addition of nanopowders is promising to extend to large-scale industrial production."  相似文献   

5.
The quality of perovskite layers has a great impact on the performance of perovskite solar cells (PSCs). However, defects and related trap sites are generated inevitably in the solution-processed polycrystalline perovskite films. It is meaningful to reduce and passivate the defect states by incorporating additive into the perovskite layer to improve perovskite crystallization. Here an environmental friendly 2D nanomaterial protonated graphitic carbon nitride (p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document}) was successfully synthesized and doped into perovskite layer of carbon-based PSCs. The addition of p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} into perovskite precursor solution not only adjusts nucleation and growth rate of methylammonium lead tri-iodide (MAPbI\begin{document}$_3$\end{document}) crystal for obtaining flat perovskite surface with larger grain size, but also reduces intrinsic defects of perovskite layer. It is found that the p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} locates at the perovskite core, and the active groups -NH\begin{document}$_2$\end{document}/NH\begin{document}$_3$\end{document} and NH have a hydrogen bond strengthening, which effectively passivates electron traps and enhances the crystal quality of perovskite. As a result, a higher power conversion efficiency of 6.61% is achieved, compared with that doped with g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} (5.93%) and undoped one (4.48%). This work demonstrates a simple method to modify the perovskite film by doping new modified additives and develops a low-cost preparation for carbon-based PSCs.  相似文献   

6.
A novel bat-like ZnO nanostructure was synthesized on the silicon substrate by simple ther-mal evaporation of zinc powders without any catalyst. Each bat-like nanorod ("nanobat") is composed of a hexagonal head, a continuous neck and a thin handle. High-resolution transmission electron microscopy and selected area electron di raction results reveal the single-crystalline feature and the growing direction along [0001] of the nanobat. The vapor-solid mechanism was found suitable to explain the growth process of the nanobat and a schematic model was proposed in detail based on the experimental results.  相似文献   

7.
The formation and migration of polarons have important influences on physical and chemical properties of transition metal oxides. Density functional theory plus the Hubbard \begin{document}$U$\end{document} correction (DFT+\begin{document}$U$\end{document}) and constrained density functional theory (cDFT) are often used to obtain the transfer properties for small polarons. In this work we have implemented the cDFT plus the Hubbard \begin{document}$U$\end{document} correction method in the projector augmented wave (PAW) framework, and applied it to study polaron transfer in the bulk phases of TiO\begin{document}$_2$\end{document}. We have confirmed that the parameter \begin{document}$U$\end{document} can have significant impact on theoretical prediction of polaronic properties. It was found that using the Hubbard \begin{document}$U$\end{document} calculated by the cDFT method with the same orbital projection as used in DFT+\begin{document}$U$\end{document}, one can obtain theoretical prediction of polaronic properties of rutile and anatase phases of TiO\begin{document}$_2$\end{document} in good agreement with experiment. This work indicates that the cDFT+\begin{document}$U$\end{document} method with consistently evaluated \begin{document}$U$\end{document} is a promising first-principles approach to polaronic properties of transition metal oxides without empirical input.  相似文献   

8.
Polydiacetylene (PDA) is one kind of the conjugated polymer with layered structure, which can serve as a host to accommodate the guest components through intercalation. In these intercalated PDAs, some of them were reported to have a nearly perfect organized structure and perform completely reversible thermochromism. Till now, these reported intercalated PDAs were made by only introducing a single component for intercalation. Here, we chose 10, 12-pentacosadiynoic acid (PCDA) as the monomer, of which the carboxyl-terminal groups can interact with either Tb\begin{document}$ ^{3+} $\end{document} ions or melamines (MAs). When the feeding molar ratio of PCDA, MA, and Tb\begin{document}$ ^{3+} $\end{document} ion was 3:267:1, only Tb\begin{document}$ ^{3+} $\end{document} ions were intercalated though excess MAs existed. Such Tb\begin{document}$ ^{3+} $\end{document}-intercalated poly-PCDA exhibited completely reversible thermochromism, where almost all the carboxyl groups interacted with Tb\begin{document}$ ^{3+} $\end{document} ions to form the nearly perfect structure. When the feeding molar ratio of PCDA, MA, and Tb\begin{document}$ ^{3+} $\end{document} ion was 3:267:0.6, both Tb\begin{document}$ ^{3+} $\end{document} ions and MAs were intercalated. There existed some defects in the imperfect MA-intercalated domains and at the domain boundaries. The MA/Tb\begin{document}$ ^{3+} $\end{document}-intercalated poly-PCDA exhibits partially reversible thermochromism, where the backbones near the defects are hard to return the initial conformation, while the rest, those at nearly perfect organized domains, are still able to restore the initial conformation.  相似文献   

9.
A superamphiphobic (SAP) surface was fabricated by electrodepositing Cu-Ni micro-nano particles on aluminum substrate and modifying via 1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane. Scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy were employed to investigate the morphology and chemical composition. The results showed that the SAP surface had three-dimensional micro-nano structures and exhibited a maximum water contact angle of 160.0\begin{document}$ ^{\circ} $\end{document}, oil contact angle of 151.6\begin{document}$ ^{\circ} $\end{document}, a minimum water slide angle of 0\begin{document}$ ^{\circ} $\end{document} and oil slide angle of 9\begin{document}$ ^{\circ} $\end{document}. The mechanical strength and chemical stability of the SAP surface were tested further. The experimental results showed that the SAP surface presented excellent resistance to wear, prominent acid-resistance and alkali-resistance, self-cleaning and anti-fouling properties.  相似文献   

10.
Fully \begin{document}$ \Lambda $\end{document}-doublet resolved differential cross sections and collision-induced rotational alignment moments have been measured for the NO(X)–Xe collision system at a collision energy of 519 cm\begin{document}$ ^{-1} $\end{document}. The experiments combine initial quantum state selection, employing a hexapole inhomogeneous electric field, with quantum state resolved detection, using (1+1\begin{document}$ ' $\end{document}) resonantly enhanced multiphoton ionization and velocity map ion imaging. The differential cross sections and polarization dependent differential cross sections are shown to agree well with quantum mechanical scattering calculations performed on ab initio potential energy surfaces [J. K?os et al. J. Chem. Phys. 137 , 014312 (2012)]. By comparison with quasi-classical trajectory calculations, quantum mechanical scattering calculations on a hard-shell potential, and kinematic apse model calculations, the effects of the attractive part of the potential on the measured differential cross sections and collision-induced rotational alignment moments are assessed.  相似文献   

11.
12.
We predict two novel group 14 element alloys Si\begin{document}$_2$\end{document}Ge and SiGe\begin{document}$_2$\end{document} in \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22 phase in this work through first-principles calculations. The structures, stability, elastic anisotropy, electronic and thermodynamic properties of these two proposed alloys are investigated systematically. The proposed \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-Si\begin{document}$_2$\end{document}Ge and \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-SiGe\begin{document}$_2$\end{document} have a hexagonal symmetry structure, and the phonon dispersion spectra and elastic constants indicate that these two alloys are dynamically and mechanically stable at ambient pressure. The elastic anisotropy properties of \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-Si\begin{document}$_2$\end{document}Ge and \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-SiGe\begin{document}$_2$\end{document} are examined elaborately by illustrating the surface constructions of Young's modulus, the contour surfaces of shear modulus, and the directional dependence of Poisson's ratio; the differences with their corresponding group 14 element allotropes \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-Si\begin{document}$_3$\end{document} and \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-Ge\begin{document}$_3$\end{document} are also discussed and compared. Moreover, the Debye temperature and sound velocities are analyzed to study the thermodynamic properties of the proposed \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-Si\begin{document}$_2$\end{document}Ge and \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-SiGe\begin{document}$_2$\end{document}.  相似文献   

13.
The development of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document}-based materials has become one of research hotspots due to the increasing demands on high-efficient photocatalyst responding to visible light. In this work, the effect of high energy radiation (\begin{document}$\gamma$\end{document}-ray) on the structure and the photocatalytic activity of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals was first studied. No morphological change of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals was observed by SEM under \begin{document}$\gamma$\end{document}-ray radiation. However, the XRD spectra of the irradiated \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals showed the characteristic 2\begin{document}$\theta$\end{document} of (113) plane shifts slightly from 28.37\begin{document}$^{\rm{o}}$\end{document} to 28.45\begin{document}$^{\rm{o}}$\end{document} with the increase of the absorbed dose, confirming the change in the crystal structure of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document}. The XPS results proved the crystal structure change was originated from the generation of oxygen vacancy defects under high-dose radiation. The photocatalytic activity of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} on the decomposition of methylene blue (MB) in water under visible light increases gradually with the increase of absorbed dose. Moreover, the improved photocatalytic performance of the irradiated \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals remained after three cycles of photocatalysis, indicating a good stability of the created oxygen vacancy defects. This work gives a new simple way to improve photocatalytic performance of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} through creating oxygen vacancy defects in the crystal structure by \begin{document}$\gamma$\end{document}-ray radiation.  相似文献   

14.
15.
CO\begin{document}$ _2 $\end{document} decomposition is a very strongly endothermic reaction where very high temperatures are required to thermally dissociate CO\begin{document}$ _2 $\end{document}. Radio frequency inductively-coupled plasma enables to selectively activate and dissociate CO\begin{document}$ _2 $\end{document} at room temperature. Tuning the flow rate and the frequency of the radio frequency inductively-coupled plasma gives high yields of CO under mild conditions. Finally the discovery of a plasma catalytic effect has been demonstrated for CO\begin{document}$ _2 $\end{document} dissociation that shows a significant increase of the CO yield by metallic meshes. The metallic meshes become catalysts under exposure to plasma to activate the recombination reaction of atomic O to yield O\begin{document}$ _2 $\end{document}, thereby reducing the reaction to convert CO back to CO\begin{document}$ _2 $\end{document}. Inductively-coupled hybrid plasma catalysis allows access to study and to utilize high CO\begin{document}$ _2 $\end{document} conversion in a non-thermal plasma regime. This advance offers opportunities to investigate the possibility to use radio frequency inductively-coupled plasma to store superfluous renewable electricity into high-valuable CO in time where the price of renewable electricity is plunging.  相似文献   

16.
In order to search for high energy density materials, various 4,8-dihydrodifurazano[3,4-b,e]pyrazine based energetic materials were designed. Density functional theory was employed to investigate the relationships between the structures and properties. The calculated results indicated that the properties of these designed compounds were influenced by the energetic groups and heterocyclic substituents. The -N\begin{document}$ _3 $\end{document} energetic group was found to be the most effective substituent to improve the heats of formation of the designed compounds while the tetrazole ring/-C(NO\begin{document}$ _2 $\end{document})\begin{document}$ _3 $\end{document} group contributed much to the values of detonation properties. The analysis of bond orders and bond dissociation energies showed that the addition of -NHNH\begin{document}$ _2 $\end{document}, -NHNO\begin{document}$ _2 $\end{document}, -CH(NO\begin{document}$ _2 $\end{document})\begin{document}$ _3 $\end{document} and -C(NO\begin{document}$ _2 $\end{document})\begin{document}$ _3 $\end{document} groups would decrease the bond dissociation energies remarkably. Compounds A8, B8, C8, D8, E8, and F8 were finally screened as the potential candidates for high energy density materials since these compounds possess excellent detonation properties and acceptable thermal stabilities. Additionally, the electronic structures of the screened compounds were calculated.  相似文献   

17.
We perform accurate quantum dynamics calculations on the isomerization of vinylidene-acetylene. Large-scale parallel computations are accomplished by an efficient theoretical scheme developed by our group, in which the basis functions are customized for the double-H transfer process. The \begin{document}$ A_1' $\end{document} and \begin{document}$ B_2'' $\end{document} vinylidene and delocalization states are obtained. The peaks recently observed in the cryo-SEVI spectra are analyzed, and very good agreement for the energy levels is achieved between theory and experiment. The discrepancies of energy levels between our calculations and recent experimental cryo-SEVI spectra are of similar magnitudes to the experimental error bars, or \begin{document}$ \le $\end{document}30 cm\begin{document}$ ^{-1} $\end{document} excluding those involving the excitation of the CCH\begin{document}$ _2 $\end{document} scissor mode. A kind of special state, called the isomerization state, is revealed and reported, which is characterized by large probability densities in both vinylidene and acetylene regions. In addition, several states dominated by vinylidene character are reported for the first time. The present work would contribute to the understanding of the double-H transfer.  相似文献   

18.
Owing to the unique structural, electronic, and physico-chemical properties, molybdenum clusters are expected to play an important role in future nanotechnologies. However, their ground states are still under debate. In this study, the crystal structure analysis by particle swarm optimization (CALYPSO) approach is used for the global minimum search, which is followed by first-principles calculations, to detect an obvious dimerization tendency in Mo\begin{document}$ _n $\end{document} (\begin{document}$ n $\end{document} = 2\begin{document}$ - $\end{document}18) clusters when the 4s and 4p semicore states are not regarded as the valence states. Further, the clusters with even number of atoms are usually magic clusters with high stability. However, after including the 4s and 4p electrons as valence electrons, the dimerization tendency exhibits a drastic reduction because the average hybridization indices \begin{document}$ H_{ \rm{sp}} $\end{document}, \begin{document}$ H_{ \rm{sd}} $\end{document}, and \begin{document}$ H_{ \rm{pd}} $\end{document} are reduced significantly. Overall, this work reports new ground states of Mo\begin{document}$ _n $\end{document} (\begin{document}$ n $\end{document} = 11, 14, 15) clusters and proves that semicore states are essential for Mo\begin{document}$ _n $\end{document}  相似文献   

19.
CH\begin{document}$_3$\end{document} internal rotation is one of the typical large amplitude motions in polyatomic molecules, the spectral analysis and theoretical calculations of which, were developed by Li-Hong Xu and Jon Hougen. We observed a Doppler-free high-resolution and high-precision spectrum of 9-methylanthracene (9MA) by using the collimated supersonic jet and optical frequency comb techniques. The potential energy curve of CH\begin{document}$_3$\end{document} internal rotation is expressed by a six-fold symmetric sinusoidal function. It was previously shown that the barrier height (\begin{document}$V_6$\end{document}) of 9MA-\begin{document}$d_{12}$\end{document} was considerably smaller than that of 9MA-\begin{document}$h_{12}$\end{document} [M. Baba, et al., J. Phys. Chem. A 113 , 2366 (2009)]. We performed ab initio theoretical calculations of the multi-component molecular orbital method. The barrier reduction by deuterium substitution was partly attributed to the difference between the wave functions of H and D atomic nuclei.  相似文献   

20.
"Graphite intercalation compounds with CuCl2-FeCl3-H2SO4 were synthesized via a hydrothermal treatment at 150 oC and exfoliation method. The structure and composition of these graphite intercalation compounds were analyzed by means of X-ray diffraction, energy dispersive X-ray and high-resolution transmission electron microscopy. The results demonstrate that the CuCl2-FeCl3-H2SO4 molecules were successfully intercalated into the interlayer of the graphite sheets. The temperature dependence of magnetization was measured from 5 K to 300 K. Two antiferromagnetic transitions of the graphite intercalation compounds were observed at low temperatures. The critical transition temperatures are estimated to be about 50 and 102 K. The related magnetic properties are discussed briefly."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号