首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Cortical neurons display network-level dynamics with unique spatiotemporal patterns that construct the backbone of processing information signals and contribute to higher functions. Recent years have seen a wealth of research on the characteristics of neuronal networks that are sufficient conditions to activate or cease network functions. Local field potentials (LFPs) exhibit a scale-free and unique event size distribution (i.e., a neuronal avalanche) that has been proven in the cortex across species, including mice, rats, and humans, and may be used as an index of cortical excitability. In the present study, we induced seizure activity in the anterior cingulate cortex (ACC) with medial thalamic inputs and evaluated the impact of cortical excitability and thalamic inputs on network-level dynamics. We measured LFPs from multi-electrode recordings in mouse cortical slices and isoflurane-anesthetized rats.

Results

The ACC activity exhibited a neuronal avalanche with regard to avalanche size distribution, and the slope of the power-law distribution of the neuronal avalanche reflected network excitability in vitro and in vivo. We found that the slope of the neuronal avalanche in seizure-like activity significantly correlated with cortical excitability induced by γ-aminobutyric acid system manipulation. The thalamic inputs desynchronized cingulate seizures and affected the level of cortical excitability, the modulation of which could be determined by the slope of the avalanche size.

Conclusions

We propose that the neuronal avalanche may be a tool for analyzing cortical activity through LFPs to determine alterations in network dynamics.  相似文献   

2.
It is shown that the cortical brain network of the macaque displays a hierarchically clustered organization and the neuron network shows small-world properties. Now the two factors will be considered in our model and the dynamical behavior of the model will be studied. We study the characters of the model and find that the distribution of avalanche size of the model follows power-law behavior.  相似文献   

3.
Based on the LISSOM model and the OFC earthquake model, we introduce a selforganized neural network model, in which the distribution of the avalanche sizes (unstable neurons) shows power-law behavior. In addition, we analyze the influence of various factors of the model on the power-law behavior of the avalanche size distribution.  相似文献   

4.
We study a simple model for a neuron function in a collective brain system. The neural network is composed of an uncorrelated configuration model (UCM) for eliminating the degree correlation of dynamical processes. The interaction of neurons is assumed to be isotropic and idealized. These neuron dynamics are similar to biological evolution in extremal dynamics with locally isotropic interaction but has a different time scale. The functioning of neurons takes place as punctuated patterns based on avalanche dynamics. In our model, the avalanche dynamics of neurons exhibit self-organized criticality which shows power-law behavior of the avalanche sizes. For a given network, the avalanche dynamic behavior is not changed with different degree exponents of networks, γ≥2.4 and various refractory periods referred to the memory effect, Tr. Furthermore, the avalanche size distributions exhibit power-law behavior in a single scaling region in contrast to other networks. However, return time distributions displaying spatiotemporal complexity have three characteristic time scaling regimes Thus, we find that UCM may be inefficient for holding a memory.  相似文献   

5.
Based on the standard self-organizing map (SOM) neural network model and an integrate-and-fire mecha-nism, we introduce a kind of coupled map lattice system to investigate scale-invariance behavior in the activity of model neural populations. We find power-law distribution behavior of avalanche size in our model. But more importantly, we find there are different avalanche distribution behaviors in different specific areas of our system, which are formed by the topological learning process of the SOM net.  相似文献   

6.
Based on the standard self-organizing map (SOM) neural network model and an integrate-and-fire mecha-nism, we introduce a kind of coupled map lattice system to investigate scale-invariance behavior in the activity of modelneural populations. We find power-law distribution behavior of avalanche size in our model. But more importantly, wefind there are different avalanche distribution behaviors in different specific areas of our system, which are formed by thetopological learning process of the SOM net.  相似文献   

7.
The strength and stability properties of hierarchical load-bearing networks and their strengthened variants have been discussed in a recent work. Here, we study the avalanche time distributions on these load-bearing networks. The avalanche time distributions of the V-lattice, a unique realization of the networks, show power-law behaviour when tested with certain fractions of its trunk weights. All other avalanche distributions show Gaussian peaked behaviour. Thus the V-lattice is the critical case of the network. We discuss the implications of this result.  相似文献   

8.
Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Here we present a model that is based on self-organized criticality and takes into account brain plasticity, which is able to reproduce the spectrum of electroencephalograms (EEG). The model consists of an electrical network with threshold firing and activity-dependent synapse strengths. The system exhibits an avalanche activity in a power-law distribution. The analysis of the power spectra of the electrical signal reproduces very robustly the power-law behavior with the exponent 0.8, experimentally measured in EEG spectra. The same value of the exponent is found on small-world lattices and for leaky neurons, indicating that universality holds for a wide class of brain models.  相似文献   

9.
A simple model for a set of integrate-and-fire neurons based on the weighted network is introduced. By considering the neurobiological phenomenon in brain development and the difference of the synaptic strength, we construct weighted networks develop with link additions and followed by selective edge removal. Thenetwork exhibits the small-world and scale-free properties with high network efficiency. The model displays an avalanche activity on a power-law distribution. We investigate the effect of selective edge removal and the neuron refractory period on the self-organized criticality of the system.  相似文献   

10.
Based on an integrate-and-fire mechanism, we investigate self-organized criticality of a simple neuron model on a modified BA scale-free network with aging nodes. In our model, we find that the distribution of avalanche size follows power-law behavior. The critical exponent τ depends on the aging exponent α. The structures of the network with aging of nodes change with an increase of α. The different topological structures lead to different behaviors in models of integrate-and-fire neurons.  相似文献   

11.
A modified Olami-Feder-Christensen model of self-organized criticality on generalized Barabási-Albert (GBA) scale-free networks is investigated. We find that our model displays power-law behavior and the avalanche dynamical behavior is sensitive to the topological structure of networks. Furthermore, the exponent τ of the model depends on b, which weights the distance in comparison with the degree in the GBA network evolution.  相似文献   

12.
Based on the LISSOM neural network model, we introduce a model to investigate self-organized criticality in the activity of neural populations. The influence of connection (synapse) between neurons has been adequately considered in this model. It is found to exhibit self-organized criticality (SOC) behavior under appropriate conditions. We also find that the learning process has promotive influence on emergence of SOC behavior. In addition, we analyze the influence of various factors of the model on the SOC behavior, which is characterized by the power-law behavior of the avalanche size distribution.  相似文献   

13.
The dynamical behavior in the cortical brain network of macaque is studied by modelling each cortical area with a subnetwork of interacting excitable neurons. We find that the avalanche of our model on different levels exhibits power-law. Furthermore the power-law exponent of the distribution and the average avalanche Size are affected by the topology of the network.  相似文献   

14.
Charge transport in electrorheological fluids is studied experimentally under strongly nonequilibrium conditions. By injecting an electrical current into a suspension of conducting nanoparticles we are able to initiate a process of self-organization which leads, in certain cases, to formation of a stable pattern which consists of continuous conducting chains of particles. The evolution of the dissipative state in such a system is a complex process. It starts as an avalanche process characterized by nucleation, growth, and thermal destruction of such dissipative elements as continuous conducting chains of particles as well as electroconvective vortices. A power-law distribution of avalanche sizes and durations, observed at this stage of the evolution, indicates that the system is in a self-organized critical state. A sharp transition into an avalanche-free state with a stable pattern of conducting chains is observed when the power dissipated in the fluid reaches its maximum. We propose a simple evolution model which obeys the maximum power condition and also shows a power-law distribution of the avalanche sizes.  相似文献   

15.
We study the driving-rate and temperature dependence of the power-law exponents that characterize the avalanche distribution in first-order phase transitions. Measurements of acoustic emission in structural transitions in Cu-Zn-Al and Cu-Al-Ni are presented. We show how the observed behavior emerges within a general framework of competing time scales of avalanche relaxation, driving rate, and thermal fluctuations. We confirm our findings by numerical simulations of a prototype model.  相似文献   

16.
We introduce the Olami-Feder-Christensen (OFC) model on a square lattice with some “rewired“ longrange connections having the properties of small world networks. We find that our model displays the power-law behavior, and connectivity topologies are very important to model‘s avalanche dynamical behaviors. Our model has some behaviors different from the OFC model on a small world network with “added“ long-range connections in our previous work [LIN Min, ZHAO Xiao-Wei, and CHEN Tian-Lun, Commun. Theor. Phys. (Beijing, China) 41 (2004) 557.].  相似文献   

17.
Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.  相似文献   

18.
The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is mapped to a first-return random-walk process in a one-dimensional lattice. In order to understand the reason of variant exponents for the power-law distributions in different self-organized critical systems, we introduce the correlations among evolution steps. Power-law distributions of the lifetime and spatial size are found when the random walk is unbiased with equal probability to move in opposite directions. It is found that the longer the correlation length, the smaller values of the exponents for the power-law distributions.  相似文献   

19.
The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is mapped to a first-return random-walk process in a one-dimensional lattice. In order to understand the reason of variant exponents for the power-law distributions in different self-organized critical systems, we introduce the correlations among evolution steps. Power-law distributions of the lifetime and spatial size are found when the random walk is unbiased with equal probability to move in opposite directions. It is found that the longer the correlation length, the smaller values of the exponents for the power-law distributions.  相似文献   

20.
We study the zero temperature properties of hysteresis in a site-diluted Ising model. The model exhibits a critical line separating a disordered from an incipient ferromagnetic ground state: the shape of the hysteresis loop changes from a smooth cycle (formed as a sequence of tiny avalanches) to a sharp cycle exhibiting a macroscopic reversal of the magnetization for a given value of the field (infinite avalanche). Criticality is characterized by power-law distribution of avalanche sizes. Model predictions are contrasted with experimental results obtained in Cu–Al–Mn alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号