首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The dissipative nonlinear Schrödinger equation with a forcing item is derived by using of multiple scales analysis and perturbation method as a mathematical model of describing envelope solitary Rossby waves with dissipation effect and external forcing in rotational stratified fluids. By analyzing the evolution of amplitude of envelope solitary Rossby waves, it is found that the shear of basic flow, Brunt-Vaisala frequency and β effect are important factors in forming the envelope solitary Rossby waves. By employing Jacobi elliptic function expansion method and Hirota's direct method, the analytic solutions of dissipative nonlinear Schrödinger equation and forced nonlinear Schrödinger equation are derived, respectively. With the help of these solutions, the effects of dissipation and external forcing on the evolution of envelope solitary Rossby wave are also discussed in detail. The results show that dissipation causes slowly decrease of amplitude of envelope solitary Rossby waves and slowly increase of width, while it has no effect on the propagation speed and different types of external forcing can excite the same envelope solitary Rossby waves. It is notable that dissipation and different types of external forcing have certain influence on the carrier frequency of envelope solitary Rossby waves.  相似文献   

2.
An explicit N-fold Darboux transformation with multiparameters for nonlinear Schrödinger equation is constructed with the help of its Lax pairs and a reduction technique. According to this Darboux transformation, the solutions of the nonlinear Schrödinger equation are reduced to solving a linear algebraic system, from which a unified and explicit formulation of N-soliton solutions with multiparameters for the nonlinear Schrödinger equation is given.  相似文献   

3.
In this paper,the rogue waves of the higher-order dispersive nonlinear Schrödinger (HDNLS) equation are investigated,which describes the propagation of ultrashort optical pulse in optical fibers.The rogue wave solutions of HDNLS equation are constructed by using the modified Darboux transformation method.The explicit first and second-order rogue wave solutions are presented under the plane wave seeding solution background.The nonlinear dynamics and properties of rogue waves are discussed by analyzing the obtained rational solutions.The influence of little perturbation ε on the rogue waves is discussed with the help of graphical simulation.  相似文献   

4.
An extended subequation rational expansion method is presented and used to construct some exact analytical solutions of the (2+1)-dimensional cubic nonlinear Schrödinger equation. From our results, many known solutions of the (2+1)-dimensional cubic nonlinear Schrödinger equation can be recovered by means of some suitable selections of the arbitrary functions and arbitrary constants. With computer simulation, the properties of new non-travelling wave and coefficient function's soliton-like solutions, and elliptic solutions are demonstrated by some plots.  相似文献   

5.
The cubic-quintic nonlinear Schrödinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic solitary waves, and trigonometric traveling waves for the cubic-quintic nonlinear Schrödinger equation with variable coefficients (vCQNLS) are derived with the aid of a set of subsidiary high-order ordinary differential equations (sub-equations for short). The method used in this paper might help one to derive the exact solutions for the other high-order nonlinear evolution equations, and shows the new application of the homogeneous balance principle.  相似文献   

6.
We construct analytical self-similar solutions for the generalized (3+1)-dimensional nonlinear Schrödinger equation with polynomial nonlinearity of arbitrary order. As an example, we list self-similar solutions of quintic nonlinear Schrödinger equation with distributed dispersion and distributed linear gain, including bright similariton solution, fractional and combined Jacobian elliptic function solutions. Moreover, we discuss self-similar evolutional dynamic behaviors of these solutions in the dispersion decreasing fiber and the periodic distributed amplification system.  相似文献   

7.
In this paper, we establish exact solutions for five complex nonlinear Schrödinger equations. The semi-inverse variational principle (SVP) is used to construct exact soliton solutions of five complex nonlinear Schrödinger equations. Many new families of exact soliton solutions of five complex nonlinear Schrödinger equations are successfully obtained.  相似文献   

8.
In this paper, the modulation instability(MI), rogue waves(RWs) and conservation laws of the coupled higher-order nonlinear Schr?dinger equation are investigated. According to MI and the2?×?2 Lax pair, Darboux-dressing transformation with an asymptotic expansion method, the existence and properties of the one-, second-, and third-order RWs for the higher-order nonlinear Schr?dinger equation are constructed. In addition, the main characteristics of these solutions are discussed through some graphics, which are draw widespread attention in a variety of complex systems such as optics, Bose–Einstein condensates, capillary flow, superfluidity, fluid dynamics,and finance. In addition, infinitely-many conservation laws are established.  相似文献   

9.
The method of nonlinearization of spectral problems is developed to thedefocusing nonlinear Schrödinger equation. As an application, an integrable decomposition of the defocusing nonlinear Schrödinger equation is presented.  相似文献   

10.
To the best of our knowledge, all nonlinearities in the known nonlinear integrable systems are either local or nonlocal. A natural problem is whether there exist some nonlinear integrable systems with both local and nonlocal nonlinearities, and how to solve this kinds of spectral nonlinear integrable systems with both local and nonlocal nonlinearities. Recently, some novel mixed local-nonlocal vector Schrödinger equations are presented, which are different from the single local and nonlocal coupled Schrödinger equation. We investigate the Darboux transformation of mixed local-nonlocal vector Schrödinger equations with a spectral problem. Starting from a special Lax pairs, the mixed localnonlocal vector Schrödinger equations are constructed. We obtain the one- and two- and N-soliton solution formulas of the mixed local-nonlocal vector Schrödinger equations with N-fold Darboux transformation. Based on the obtained solutions, the propagation and interaction structures of these multi-solitons are shown, the evolution structures of the one-solitons are exhibited, the overtaking elastic interactions among the two-breather solitons are considered. We find that unlike the local and nonlocal cases, the mixed local-nonlocal vector Schrödinger equations have some novel results. The results in this paper might be helpful for understanding some physical phenomena described in plasmas.  相似文献   

11.
The basic set of fluid equations can be reduced to the nonlinear Kortewege-de Vries (KdV) and nonlinear Schrödinger (NLS) equations. The rational solutions for the two equations has been obtained. The exact amplitude of the nonlinear ion-acoustic solitary wave can be obtained directly without resorting to any successive approximation techniques by a direct analysis of the given field equations. The Sagdeev's potential is obtained in terms of ion acoustic velocity by simply solving an algebraic equation. The soliton and double layer solutions are obtained as a small amplitude approximation. A comparison between the exact soliton solution and that obtained from the reductive perturbation theory are also discussed.  相似文献   

12.
By using the generalized tanh-function method, we find bright and dark solitary wave solutions to an extended nonlinear Schrödinger equation with the third-order and fourth-order dispersion and the cubic-quintic nonlinear terms, describing the propagation of extremely short pulses. At the same time, we also obtained other types of exact solutions.  相似文献   

13.
In this paper, a new type (or the second type) of transformation which is used to map the variable coefficient nonlinear Schrödinger (VCNLS) equation to the usual nonlinear Schrödinger (NLS) equation is given. As a special case, a new kind of nonautonomous NLS equation with a t-dependent potential is
introduced. Further, by using the new transformation and making full use of the known soliton and rogue wave solutions of the usual NLS equation, the corresponding kinds of solutions of a special model of the new nonautonomous NLS equation are discussed respectively. Additionally, through using the new transformation, a new expression, i.e., the non-rational formula, of the rogue wave of a special VCNLS equation is given analytically.
The main differences between the two types of transformation mentioned above are listed by three items.  相似文献   

14.
Most of the important aspects of soliton propagation through optical fibers for transcontinental and transoceanic long distances can best be described using the nonlinear Schrödinger equation. Optical solitons are electromagnetic waves that span in nonlinear dispersive media and permit the stress and intensity to stay unaltered as a result of the delicate balance between dispersion and nonlinearity effects. However, this study exploited the Jacobi elliptic method and obtained different soliton solutions of the decoupled nonlinear Schrödinger equation with ease. Discussions about the obtained solutions were made with the aid of some 3D graphs.  相似文献   

15.
Some new exact travelling wave and period solutions of discrete nonlinear Schrödinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.  相似文献   

16.
An improved homogeneous balance principle and an F-expansiontechnique are used to construct exact self-similar solutions to the cubic-quintic nonlinear Schrödinger equation. Such solutions exist under certain conditions, and impose constraints on the functions describing dispersion, nonlinearity, and the external potential. Some simple self-similar waves are presented.  相似文献   

17.
In this paper, we construct the rogue wave solutions of the sixth-order nonlinear Schrödinger equation on a background of Jacobian elliptic functions dn and cn by means of the nonlinearization of a spectral problem and Darboux transformation approach. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.  相似文献   

18.
JI Jie 《理论物理通讯》2008,50(6):1279-1282
In this paper, we present an extended Exp-function method to differential-difference equation(s). With the help of symbolic computation, we solve discrete nonlinear Schrödinger lattice as an example, and obtain a series of general solutions in forms of Exp-function.  相似文献   

19.
The nonlocal nonlinear Schrödinger equation (NNLSE) with competing weakly nonlocal nonlinearity and parabolic law nonlinearity is explored in the current work. A powerful integration tool, which is a modified form of the simple equation method, is used to construct the dark and singular 1-soliton solutions. It is shown that the modified simple equation method provides an effective and powerful mathematical gadget for solving various types of NNLSEs.  相似文献   

20.
The rogue waves with a controllable center are reported for the nonlinear Schrödinger equation in terms of rational-like functions by using a direct method. The position of these solutions can be controlled by choosing different center parameters and this may describe the possible formation mechanisms for optical, oceanic, and matter rogue wave phenomenon in optical fibres, the deep ocean, Bose-Einstein condensates respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号