首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Alkyl hydroperoxides are found to be important intermediates in the combustion and oxidation processes of hydrocarbons. However, studies of ethyl hydroperoxide (CH(3)CH(2)OOH) are limited. In this work, kinetics and mechanisms for unimolecular decomposition of CH(3)CH(2)OOH have been investigated. The potential energy surface of decomposition reactions have first been predicted at the CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p) level. The results show that the formation of CH(3)CH(2)O + OH via O-O direct bond dissociation is dominant, the branching ratio of which is over 99% in the whole temperature range from 300 to 1000 K, and its rate constant can be expressed as k1 = 9.26 × 10(52)T(-11.91)exp(-26879/T) s(-1) at 1 atm. The rate constants of the reaction CH(3)CH(2)OOH → CH(3)CH(2)O + OH at different temperatures and pressures have been calculated, which can help us to comprehend the reactions of CH(3)CH(2)OOH at experimental conditions.  相似文献   

2.
[reaction: see text] Neutral homoaromaticity has been evaluated in heterocyclic systems related to the bicyclo[3.2.1]octane skeleton with replacement of CH(2) at C-2 in bicyclo[3.2.1]octa-3,6-diene with X = BH, AlH, Be, Mg, O, S, PH, NH (12); replacement of CH at C-3 in bicyclo[3.2.1]octa-3,6-dien-2-yl anion with PH, S, NH, O (13); and replacement at C-2 and C-3 with N and O (14). Stabilization energies (SE) are evaluated using density functional theory and homodesmotic equations at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level for series 12-14. Stabilization energies are compared with diamagnetic susceptibility exaltations, Lambda, CSGT-B3LYP/6-31G(d)//B3LYP/6-31G(d), and nucleus-independent chemical shifts (NICS), GIAO-B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d). Analysis of frontier orbitals and geometries, B3LYP/6-31G(d)//B3LYP/6-31G(d), and proton affinities of 2-azabicyclo[3.2.1]octa-3,6-diene, pyrrole, and related model systems, B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d), provide complementary evidence supporting the division of the substrates evaluated into antihomoaromatic (12, X = BH, AlH, and Be), nonhomoaromatic (12, X = O, S, NH, PH), and homoaromatic (13, X = S, PH, NH, O and 14 X = ON), with 12 (X = Mg) appearing as transitional between anti- and nonhomoaromatic.  相似文献   

3.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

4.
采用DFT B3LYP和QCISD方法研究了不饱和类锗烯H2C=GeLiCl与RH(R=F, OH, NH2)的插入反应. 在B3LYP/6-311+G(d,p)水平上优化了反应势能面上的驻点构型. 结果表明, H2C=GeLiCl与HF、H2O 或NH3发生插入反应的机理相同. QCISD/6-311++G(d,p)//B3LYP/6-311+G(d,p)计算的三个反应的势垒分别为173.53、194.48和209.05 kJ·mol-1, 反应热分别为60.18、72.93和75.34 kJ·mol-1. 相同条件下发生插入反应时, 反应活性顺序都是H—F>H—OH>H—NH2.  相似文献   

5.
Lithium cation complexes with serine (Ser) and threonine (Thr) are collisionally activated with xenon in a guided ion beam tandem mass spectrometer and are observed to exhibit a variety of decomposition pathways in addition to a loss of the intact ligand. Prominent pathways include a loss of H2O, CO2, and aldehydes (XCHO where X=H for Ser and CH3 for Thr). Quantum chemical calculations at the B3LYP/6-311+G(d,p) level are used to explore the reaction mechanisms for these processes in detail. Complete potential energy surfaces for all three processes are elucidated, including all intermediates and transition states. Theoretical molecular parameters for the rate-limiting transition states are then used to analyze the threshold energies in the experimental data, providing experimental measurements of the energies of these transition states. These experimental energies are compared with single-point energies calculated at three different levels, B3LYP, B3P86, and MP2(full), using the 6-311+G(2d,2p) basis set with geometries and zero-point energies calculated at the B3LYP/6-311+G(d,p) level. Good agreement between experiment and theory (especially MP2(full)) suggests that the reaction mechanisms have been reasonably elucidated.  相似文献   

6.
Gas-phase acidities of CH2=C=X (X = CH2, NH, O, and S) and barriers for the identity proton transfers (X=C=CH2 + HC triple bond C-X- right harpoon over left harpoon -X-C triple bond CH + CH2=C=X) as well as geometries and charge distributions of CH2=C=X, HC triple bond C-X- and the transition states of the proton transfer were determined by ab initio methods at the MP2/6-311+G(d,p)//MP2/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory. The acidities were also calculated at the CCSD(T)/6-311+G(2df,p) level. A major objective of this study was to examine how the enhanced unsaturation of CH2=C=X compared to that of CH3CH=X may affect acidities, transition state imbalances, and intrinsic barriers of the identity proton transfer. The results show that the acidities are all higher while the barriers are lower than for the corresponding CH3CH=X series. The transition states are all imbalanced but less so than for the reactions of CH3CH=X.  相似文献   

7.
The reaction system of 1-propenyl radical with NO is an ideal model for studying the intermolecular and intramolecular reactions of complex organic free radicals containing C=C double bonds. On the basis of the full optimization of all species with the Gaussian 98 package at the B3LYP/6-311++G** level, the reaction mechanism was elucidated extensively using the vibrational mode analysis. There are seven reaction pathways and five sets of small molecule end products: CH2O+CH3CN, CH2CHCN+H2O, CH3CHO+HCN, CH3CHO+HNC, and CH3CCH+HNO. The channel of C3H5¢+NO→ IM1→TS1→IM2→TS2→IM3→TS3→CH3CHO+HCN is thermodynamically most favorable.  相似文献   

8.
采用密度泛函理论B3LYP方法研究了GeH2自由基与HNCS的反应机理,并在B3LYP/6-311++G**水平上对反应物,中间体,过渡态进行了全几何参数优化,通过频率分析和IRC确定中间体和过渡态。为了得到更精确的能量值,用QCISD(T)/6-311++G**方法计算了各个驻点的单点能,计算结果表明单重态的锗烯与异硫氰酸的反应有抽提硫、插入N-H键、抽提亚氨基的路径,而经由三元环中间体的抽提硫反应GeH2+HNCS→IM3→TS2→IM4→TS3→IM5→GeH2S+HNC(P1),反应能垒最低,为主反应通道,甲锗硫醛和异氰氢酸为主产物。锗烯经由四元环中间体抽提硫的反应为竞争反应通道。  相似文献   

9.
The reaction of NCN with O is relevant to the formation of prompt NO according to the new mechanism, CH+N2-->cyclic-C(H)NN- -->HNCN-->H+NCN. The reaction has been investigated by ab initio molecular orbital and transition state theory calculations. The mechanisms for formation of possible product channels involved in the singlet and triplet potential energy surfaces have been predicted at the highest level of the modified GAUSSIAN-2 (G2M) method, G2M (CC1). The barrierless association/dissociation processes on the singlet surface were also examined with the third-order Rayleigh-Schr?dinger perturbation (CASPT3) and the multireference configuration interaction methods including Davidson's correction for higher excitations (MRCI+Q) at the CASPT3(6,6)/6-311+G(3df)//UB3LYP/6-311G(d) and MRCI+Q(6,6)/6-311+G(3df)//UB3LYP/6-311G(d) levels. The rate constants for the low-energy channels producing CO+N2, CN+NO, and N(4S)+NCO have been calculated in the temperature range of 200-3000 K. The results show that the formation of CN+NO is dominant and its branching ratio is over 99% in the whole temperature range; no pressure dependence was noted at pressures below 100 atm. The total rate constant can be expressed by: kt=4.23x10(-11) T0.15 exp(17/T) cm3 molecule(-1) s(-1).  相似文献   

10.
High-level ab initio calculations (B3LYP/6-31+G and QCISD(T)/6-311+G**) were carried out to resolve the disagreement between recent experimental and computational estimates of the relative strength of the intramolecular hydrogen bond in Z-hydrogen maleate anion with respect to the normal hydrogen bond in maleic acid. The computational estimates for the strength of the intramolecular hydrogen bond in the gas-phase maleate anion are in a range of 14-28 kcal/mol depending on the choice of the reference structure. Computational data suggest that the electrostatic influence of a counterion such as a tetraalkylammonium cation can considerably weaken the hydrogen bonding interaction (by 1.5-2 times) in the complexed hydrogen maleate anion relative to that in the naked anion. The estimated internal H-bonding energies for a series of Z-maleate/R4N+ salts (R = CH3, C2H5, CH3CH2CH2CH2) range from 8 to 13 kcal/mol. The calculated energy differences between the E- and Z-hydrogen maleates complexed to Me4N+, Et4N+, and Bu4N+ cation are 4.9 (B3LYP/6-31+G(d,p)) and 5.7 and 5.8 kcal/mol (B3LYP/6-31G(d)). It is also demonstrated that the sodium cation exerts a similar electrostatic influence on the hydrogen bond strength in bifluoride anion (FHF-). The present study shows that while low-barrier short hydrogen bonds can exist in the gas phase (the barrier for the hydrogen transfer in maleate anion is only 0.2 kcal/mol at the QCISD(T)/6-311+G//QCISD/6-31+G level), whether they can also be strong in condensed media or not depends on how their interactions with their immediate environment affect their strength.  相似文献   

11.
在HF/6-311G(d,p)、 MP2/6-311G(d,p)和B3LYP/6-311G(d,p)水平上,对H2CO和CH3CN以及设计的4种结构H2CO…CH3CN复合物等进行几何全优化和振动频率计算,排除振动频率为负值的非局域极小点结构,并对稳定的环状构型复合物结合能进行基组重叠误差校正和零点振动能校正.分子间相互作用的能量分解分析显示,静电能在H2CO...CH3CN相互作用能量中占主导地位,电荷转移能居第二位.  相似文献   

12.
The electronic structure and geometries of (Z)- and (E)-H-CON- N+(CH3)3 have been examined at two levels of theory: B3LYP (basis sets 6-311+G(d,p), 6-311++G(d,p), and 6-311G(3df,3pd)) and MP2(full)/6-311++G(d,p). The (Z) conformation about the C(O)-N(-) bond is thermodynamically preferred over the (E) configuration. Natural bond orbital calculation locates one lone pair of the N- in the HOMO, which is the p(z) natural hybrid orbital (perpendicular to the O=CN- N+ plane). The second lone pair (of lower energy) of N- occupies the HOMO-3, which is the natural hybrid orbital sp(1.12) (sp(1.01) for the (E) conformation, sp(1.74) in the rotational transition state). The carbonyl pi bond is the HOMO-2. The charge-transfer ability of the negative nitrogen in H-CON- N+ (CH3)3 is more powerful than that of the neutral amidic nitrogen in dimethylformamide. The following facts convincingly sustain this view: (1) the higher rotational barrier (stronger C-N(-) bond) in the case of H-CON- N+ (CH3)3, (2) natural resonance theory analysis predicts almost equal weights for the (Z)-H-C(=O)N- N+ (CH3)3 and the (Z)-H-C(O-)=NN+ (CH3)3 canonical resonance structures whereas the weight of the HCON(CH3)2 structure is almost twice as large as that of HC(O-)=N+ (CH3)2, and (3) the second-order perturbation stabilization, as a result of the donor (N-)/acceptor (carbonyl) interaction, is 101.3 kcal/mol for H-CON- N+ (CH3)3 and only 64.4 kcal/mol for dimethylformamide.  相似文献   

13.
用密度泛函理论(DFT)B3LYP方法, 在6-311G基组下,计算研究了反应Cl+F2→ClF+F和对称反应F+ClF′→ClF+F′的机理。求得前者的过渡态为三角形,活化能为15.57 kJ*mol-1;后者的过渡态为线形和三角形,活化能分别为11.52和196.25 kJ*mol-1。结果均经过振动分析和IRC计算验证。  相似文献   

14.
The complex potential energy surface and reaction mechanisms for the unimolecular isomerization and decomposition of methyl-nitramine (CH3NHNO2) were theoretically probed at the QCISD(T)/6-311+G*//B3LYP/6-311+G* level of theory. The results demonstrated that there are four low-lying energy channels: (i) the NN bond fission pathway; (ii) a sequence of isomerization reactions via CH3NN(OH)O; (IS2a); (iii) the HONO elimination pathway; (iv) the isomerization and the dissociation reactions via CH3NHONO (IS3). The rate constants of each initial step (rate-determining step) for these channels were calculated using the canonical transition state theory. The Arrhenius expressions of the channels over the temperature range 298-2000 K are k6(T)=1014:8e-46:0=RT , k7(T)=1013:7e-42:1=RT , k8(T)=1013:6e-51:8=RT and k9(T)=1015:6e-54:3=RT s-1, respectively. The calculated overall rate constants is 6.9£10-4 at 543 K, which is in good agreement with the experimental data. Based on the analysis of the rate constants, the dominant pathway is the isomerization reaction to form CH3NN(OH)O at low temperatures, while the NN bond fission and the isomerization reaction to produce CH3NHONO are expected to be competitive with the isomerization reaction to form CH3NN(OH)O at high temperatures.  相似文献   

15.
The gas-phase reaction mechanisms of methylamine (MA) with the ground-state Co(+)((3)F) and Ni(+)((2)D) are theoretically investigated using density functional theory at both the B3LYP/6-311++G(d,p) and B3LYP/6-311++G(3df,2p) levels. The reactions for hydride abstraction and dehydrogenation are analyzed in terms of the topology of potential energy surfaces (PESs). Co(+) and Ni(+) perform similar roles along the isomerization processes to the final products. Hydride abstraction takes place via the key species of metal cation-methyl-H intermediate, followed by a charge transfer process before the direct dissociation of CH(2)NH(2)(+)···MH (M = Co, Ni). The enthalpies of reaction, stability of metal cation-methyl-H species, and competition between different channels account for the sequence of the hydride abstraction products: CoH < NiH < CuH. The most competitive dehydrogenation route occurs through a stepwise reaction, consisting of initial C-H activation, amino-H shift, and direct dissociation of the precursor CH(2)NHM(+)···H(2). This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanisms of amine prototype with late first-row transition metal cations.  相似文献   

16.
类硅烯H2C=SiLiBr与RH (R=F, OH, NH2)的插入反应   总被引:1,自引:0,他引:1  
采用DFT B3LYP和QCISD方法研究了类硅烯H2C=SiLiBr与RH (R=F, OH, NH2)的插入反应. 在B3LYP/6- 311+G(d,p)水平上优化了反应势能面上的驻点构型. 结果表明, H2C=SiLiBr与HF, H2O或NH3发生插入反应的机理相同. QCISD/6-311++G(d,p)//B3LYP/6-311+G(d,p)计算的三个反应的势垒分别为148.62, 164.42和165.07 kJ&#8226;mol-1, 反应热分别为-69.63, -43.02和-28.27 kJ&#8226;mol-1. 相同条件下发生插入反应时, 反应活性都是H—F>H—OH>H—NH2.  相似文献   

17.
The unimolecular decomposition processes of ethylene glycol have been investigated with the QCISD(T) method with geometries optimized at the B3LYP/6-311++G(d,p) level. Among the decomposition channels identified, the H(2)O-elimination channels have the lowest barriers, and the C-C bond dissociation is the lowest-energy dissociation channel among the barrierless reactions (the direct bond cleavage reactions). The temperature and pressure dependent rate constant calculations show that the H(2)O-elimination reactions are predominant at low temperature, whereas at high temperature, the direct C-C bond dissociation reaction is dominant. At 1 atm, in the temperature range 500-2000 K, the calculated rate constant is expressed to be 7.63 × 10(47)T(-10.38) exp(-42262/T) for the channel CH(2)OHCH(2)OH → CH(2)CHOH + H(2)O, and 2.48 × 10(51)T(-11.58) exp(-43593/T) for the channel CH(2)OHCH(2)OH → CH(3)CHO + H(2)O, whereas for the direct bond dissociation reaction CH(2)OHCH(2)OH → CH(2)OH + CH(2)OH the rate constant expression is 1.04 × 10(71)T(-16.16) exp(-52414/T).  相似文献   

18.
The structural and vibrational properties of the transition state of the N(2)O + X (X = Cl,Br) reactions have been characterized by ab initio methods using density functional theory. We have employed Becke's hybrid functional (B3LYP), and transition state optimizations were performed with 6-31G(d), 6-311G(2d,2p), 6-311+G(3d,2p), and 6-311+G(3df,2p) basis sets. For the chlorine atom reaction the coupled-cluster method (CCSD(T)) with 6-31G(d) basis set was also used. All calculations resulted in transition state structures with a planar cis arrangement of atoms for both reactions. The geometrical parameters of transition states at B3LYP are very similar, and the reaction coordinates involve mainly the breaking of the N-O bond. At CCSD(T)/6-31G(d) level a contribution of the O-Cl forming bond is also observed in the reaction coordinate. In addition, several highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction energetics. All model chemistries predict exothermic reactions. The G3 and G2 methods result in the smallest deviations from experiment, 1.8 and 0 kcal mol(-1), for the enthalpies of reaction for N(2)O reaction with chlorine and bromine, respectively. The G3//B3LYP and G1 methods perform best among the composite methods in predicting energies of the transition state, with a deviation of 1.9 and 3.0 kcal mol(-1), respectively, in the activation energies for the above processes. However, the B3LYP/6-311+G(3df,2p) method gives smaller deviations of 0.4 and -1.0 kcal mol(-1), respectively. The performance of the methodologies applied in predicting transition state energies was analyzed.  相似文献   

19.
The CH3S* + O2 reaction system is considered an important process in atmospheric chemistry and in combustion as a pathway for the exothermic conversion of methane-thiyl radical, CH3S*. Several density functional and ab initio computational methods are used in this study to determine thermochemical parameters, reaction paths, and kinetic barriers in the CH3S* + O2 reaction system. The data are also used to evaluate feasibility of the DFT methods for higher molecular weight oxy-sulfur hydrocarbons, where sulfur presents added complexity from its many valence states. The methods include: B3LYP/6-311++G(d,p), B3LYP/6-311++G(3df,2p), CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p), B3P86/6-311G(2d,2p)//B3P86/6-31G(d), B3PW91/6-311++G(3df,2p), G3MP2, and CBS-QB3. The well depth for the CH3S* + 3O2 reaction to the syn-CH3SOO* adduct is found to be 9.7 kcal/mol. Low barrier exit channels from the syn-CH3SOO* adduct include: CH2S + HO2, (TS6, E(a) is 12.5 kcal/mol), CH3 + SO2 via CH3SO2 (TS2', E(a) is 17.8) and CH3SO + O (TS17, E(a) is 24.7) where the activation energy is relative to the syn-CH3SOO* stabilized adduct. The transition state (TS5) for formation of the CH3SOO adduct from CH3S* + O2 and the reverse dissociation of CH3SOO to CH3S* + O2 is relatively tight compared to typical association and simple bond dissociation reactions; this is a result of the very weak interaction. Reverse reaction is the dominant dissociation path due to enthalpy and entropy considerations. The rate constants from the chemical activation reaction and from the stabilized adduct to these products are estimated as functions of temperature and pressure. Our forward rate constant and CH3S loss profile are in agreement with the experiments under similar conditions. Of the methods above, the G3MP2 and CBS-QB3 composite methods are recommended for thermochemical determinations on these carbon-sulfur-oxygen systems, when they are feasible.  相似文献   

20.
用DFT B3LYP方法及6-311G(d,p),6-311+G(d,p)和LanL2dz基组,对C6F5X+(X=Cl,Br,I,CH3)阳离子做了理论研究,优化了它们的电子基态的构型,计算了对应分子的垂直电离势(VIP)和绝热电离势(AIP).结果表明四种离子的构型的对称点群和对应分子相同,但构型参数有明显差别.B...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号