首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The network parameters of swollen, solution-crosslinked polymer filaments can be collected from deswelling measurements in solutions of nonpermeating polymer or, as shown in this paper, from the stress–strain relation when in equilibrium with the surrounding solvent. The degree of swelling, at which the partial molar free energy of elasticity equals zero, is found to vary with solvent power in agreement with earlier findings on other systems. Comparison with results of studies on rubber networks crosslinked in the absence of diluent show that previously observed discrepancies between theory and experiment can be attributed to the deficiency of the single term involving the one-third power of the volume fraction of polymer in the swollen network to describe the contribution of the partial elastic free energy.  相似文献   

2.
The porous structure of copolymers obtained by suspension polymerization has been investigated. Three different copolymers were synthesized—styrene‐divinylbenzene, ethylene glycol dimethacrylate‐divinylbenzene, and 1,4‐phenylene dimethacrylate‐divinylbenzene. All the copolymers were porous. As a pore‐forming diluent, the mixture of toluene (good solvent) and n‐dodecane (nonsolvent) was used. The influence of the composition of two‐component diluent on the porous structure of the copolymers has been examined. Surface areas, pore volumes, pore size distributions, skeletal and apparent densities, and swellability coefficients were determined for the copolymers obtained in the presence of 0, 15, 50, 85, and 100% (v/v) toluene in the mixture with n‐dodecane. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3079–3085, 2002  相似文献   

3.
Three types of commercial styrene–acrylonitrile copolymer were fractionated by coacervate extraction and by column-elution techniques. Both methods were studied with two different solvent–nonsolvent pairs. Glass wool was used as the support material in the column. Fractionation by the coacervate extraction method was studied with benzene–triethylene glycol as a solvent–nonsolvent system at 60°C and with dichloromethane–triethylene glycol at 25°C. Column elution was carried out with acetone–methanol as the solvent–nonsolvent system at 30°C, and with dichloromethane–methanol at 20°C. Results of excellent reproducibility were obtained by these two methods. Characterization of fractions involved determination of both the molecular weight and chemical composition. It was established that the fractionation of the samples tested was dependent upon molecular weight only. The two methods described above are compared. Each gives an efficient procedure for fractionation of styrene–acrylonitrile copolymers.  相似文献   

4.
Prediction of swelling behaviour of hydrogels containing cationic and anionic moieties, sensitive to pH and ionic strength changes of the swelling medium was investigated. The equations derived for the prediction of the theoretical swelling curves are based on the phantom network theory and the approaches of Peppas et al. For all predictions, a number of polymer based parameters, solution property parameters and polymer–solvent combination type parameters were evaluated typical of amphiphilic copolymers. The advantages of the derived equations for the determinations of average molecular weight between the cross-links, and also polymer–solvent interaction parameter have been exemplified.  相似文献   

5.
Hydrophobic–hydrophilic water-soluble block copolymers were prepared by “living” anionic polymerization. They consist of a polystyrene block and a polyethylene oxide block. From data on solution viscosity and high-resolution NMR in water, the molecular dimensions of the two-blocks copolymers are found similar to that of polyethylene glycols of the same molecular weight in the same solvent. These block copolymers exhibit microphase separation.  相似文献   

6.
Polyetheretherketone-polydimethylsiloxane (PEEK–PDMS) block copolymers were synthesized from the condensation of dimethylamino terminated PDMS and hydroxy terminated PEEK oligomers in 1-chloronapthalene. Yields for block copolymers synthesised from low molecular weight PDMS oligomers were good but yields were significantly reduced when higher molecular weight PDMS oligomers were used. This was related to the limited solubility of higher molecular weight PDMS in the reaction solvent. Differential scanning calorimetry (DSC) studies indicated that phase separation of the block copolymers occurred at very short segment length (M?n < 4000). A depression in the crystallinity of both the PEEK and PDMS phases in the block copolymer was observed. Thermogravimetric analysis (TGA) studies indicated that the PEEK–PDMS block copolymers displayed insufficient thermo-oxidative stability to be melt-processed successfully in PEEK based blends.  相似文献   

7.
The swelling behavior of acid form poly(styrene sulfonate) (PSS‐H) thin films were investigated using in situ spectroscopic ellipsometry (SE) to probe the polymer–solvent interactions of ion‐containing polymers under interfacial confinement. The interaction parameter (χ), related to the polymer and solvent solubility parameters in the Flory–Huggins theory, describes the polymer‐solvent compatibility. In situ SE was used to measure the degree of polymer swelling in various solvent vapor environments, to determine χ for the solvent‐PSS‐H system. The calculated solubility parameter of 40–44 MPa1/2 for PSS‐H was determined through measured χ values in water, methanol, and formamide environments at a solvent vapor activity of 0.95. Flory–Huggins theory was applied to describe the thickness‐dependent swelling of PSS‐H and to quantify the water‐PSS‐H interactions. Confinement had a significant influence on polymer swelling at low water vapor activities expressed as an increased χ between the water and polymer with decreasing film thickness. As the volume fraction of water approached ~0.3, the measured χ value was ~0.65, indicating the water interacted with the polymer in a similar manner, regardless of thicknesses. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1365–1372  相似文献   

8.
It is predicted that the net repulsion between the segments of a polymer network and a poor solvent can cause a phase transition marked by a sudden change in the degree of swelling. This is analogous to the “coil–globule” transition recently predicted by Ptitsyn to occur for a macromolecule in solution. The critical conditions for the transition. as well as phase diagrams, are calculated for the gel in free swelling and under uniaxial tension, which facilitates the transition. The transition depends on the gel being formed of chains crosslinked while greatly swollen by a diluent and also having a high degree of crosslinking. It is concluded that it would be difficult to attain the conditions necessary for the transition in the free-swelling case, but that it should be possible for gel under tension.  相似文献   

9.
Compositionally homogeneous poly(ethylene‐α‐olefin) random copolymers with 1‐butene and 1‐hexene comonomers have been studied. The melting of solution‐crystallized specimens of these copolymers in the presence of trichlorobenzene as a diluent with differential scanning calorimetry (DSC) is well correlated with analytical temperature rising elution fractionation (A‐TREF) elution temperature profiles. This indicates that the A‐TREF experiment is essentially a diluent melting experiment. Furthermore, the correction of the corresponding solid‐state melting endotherms of these copolymers with Flory's diluent melting equation yields curves that also correlate very well with the DSC diluent melting curves and the A‐TREF elution temperature profiles. Values of χ, the Flory–Huggins interaction parameter, are determined for these copolymers in trichlorobenzene. χ decreases as short‐chain branching increases. The A‐TREF elution temperature profiles of one of these copolymers are the same, within experimental error, for dilute‐solution crystallizations of the copolymer performed over an extremely broad time schedule (10 s to 3 days). This indicates the profound effect of the branches, as limiting points of the ethylene sequences, in controlling the crystal thickness distribution, which in turn controls the melting point in the presence of the diluent, or the elution temperature from the A‐TREF. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2819–2832, 2001  相似文献   

10.
Vinyl chloride–acrylonitrile (VC–AN) copolymer was synthesized through emulsion copolymerization. VC–AN copolymer/silica nanocomposites were prepared by solution blending of copolymer and silica in a common solvent, N,N‐dimethylformamide (DMF). The rheology studies show that the shear‐thinning behavior of the VC–AN copolymer solution becomes less distinct as nano particles are introduced. It was also found that the viscosity of the copolymer solution decreases with adding small amount of nano particles. Transmission electron microscopy observations indicate that the UV‐treated silica could disperse well in the copolymer matrix. Differential scanning calorimeter studies suggest that the presence of the silica suppresses crystallization of the AN segments in the copolymers. Because of the interactions between copolymer chains and inorganic particles, the thermal stability and mechanical strength of the VC–AN copolymers are improved considerably. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3127–3134, 2005  相似文献   

11.
New poly(imide–benzoxazole) copolymers were prepared directly from a dianhydride, a diacid chloride, and a bis(o‐diaminophenol) monomer in a two‐step method. In the first step, poly(amic acid–hydroxyamide) precursors were synthesized by low‐temperature solution polymerization in an organic solvent. Subsequently, the thermal cyclodehydration of the poly(amic acid–hydroxyamide) precursors at 350 °C produced the corresponding poly(imide–benzoxazole) copolymers. The inherent viscosities of the precursor polymers were around 0.19–0.33 dL/g. The cyclized poly(imide–benzoxazole) copolymers had glass‐transition temperatures in the range of 331–377 °C. The 5% weight loss temperatures ranged from 524 to 535 °C in nitrogen and from 500 to 514 °C in air. The poly(imide–benzoxazole) copolymers were amorphous, as evidenced by the wide‐angle X‐ray diffraction measurements. The structures of the precursor copolymers and the fully cyclized copolymers were characterized by Fourier transform infrared, 1H NMR, and elemental analysis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6020–6027, 2005  相似文献   

12.
A versatile coupling reaction for the preparation of polybutadiene–poly‐(hexafluoropropylene oxide) (BF) diblock copolymers is described. Six diblock copolymers with different block lengths were characterized by nuclear magnetic resonance spectroscopy and size exclusion chromatography; all six had total molecular weights below 15,000. Microphase separation of the block copolymers in the bulk state was established by small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry. SAXS data suggest that the diblocks are characterized by an unusually large Flory‐Huggins interaction parameter, χ, on the order of 10. However, extraction of χ from the order–disorder transition gave large (order 1) but significantly different values, thereby suggesting that these copolymers are too small and too strongly interacting to be described by block copolymer mean‐field theory. Dynamic light scattering was used to analyze dilute solutions of the title block copolymers in four selective organic solvents; the sizes of the micelles formed were solvent dependent. The micellar aggregates were large and nonspherical, and this is also attributed to the high degree of incompatibility between the two immiscible blocks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3685–3694, 2005  相似文献   

13.
The swelling curves of 6μ films of low conversion homopolymers and copolymers of acrylamide (AM) and N-isopropylacrylamide (NIPAM) were obtained in water by an optical microscope technique. Poly(AM) swelled appreciably faster than poly(NIPAM) but there was no apparent correlation between overall swelling rate and copolymer composition. A 57/43 (mole %) AM–NIPAM copolymer swelled fastest. Sequence distribution calculations indicated that its backbone structure tended toward comonomer alternation, which might reduce the extent of hydrogen bonding in the film. The amount of water sorbed during swelling, as approximated from increasing film thickness, was proportional to the square root of time and agreed well with previous work in the literature. Homopolymer films from runs of ca. 50% conversion consistently swelled slower than their low conversion counterparts, probably due to branching and increased entanglements. Heating also promoted slower film swelling due to a tightening of the film structure and/or a low degree of imidization. Monomer reactivity ratios and Alfrey-Price Q and e values for NIPAM were calculated. Cloud points of 5% aqueous solutions of the copolymers were measured and found to decrease with increasing NIPAM content.  相似文献   

14.
A new synthetic approach for the preparation of segmented polyurethaneurea (SPUU)–PEO–Heparin graft copolymers (B–PEO–Hep) has been developed. The procedure involved the coupling of hexamethylene diisocyanate (HMDI) to soluble Biomer® (B) through an allophanate/biuret reaction. The free isocyanate (NCO) groups attached to Biomer® were then coupled to PEO terminal hydroxyl groups to form PEO grafted Biomer® (B–PEO). B–PEO free hydroxy groups were modified with HMDI to introduce terminal isocyanate groups. The NCO functionalized B–PEO was then coupled to heparin (Hep) functional groups (? OH, ? NH2) producing B–PEO–Hep graft copolymer. Synthetic intermediates were confirmed by FTIR, NCO group determination, and toluidine blue heparin assay. Physical characterization techniques, such as contact angle measurements, water swelling, light scattering measurements, and DSC thermal analysis, detailed properties of the graft copolymer containing covalently bound heparin. This new heparinized copolymer can be applied as a coating on other existing blood contacting surfaces without changing bulk properties. The heparin bioactivity observed attests to the usefulness of this new procedure as a coating to improve the blood compatibility of blood-contacting surfaces.  相似文献   

15.
Chitin–cellulose blends dissolved in dimethylacetamide containing LiCl (7% w/w) have been studied in a wide concentration range, from very dilute solutions to medium concentrations and up to solid films (absence of diluent). The intrinsic viscosities at various chitin–cellulose ratios, as well as the phase diagram behavior, imply a good compatibility between the components. The result is confirmed by the infrared measurements on solid films. The lack of anisotropic phase formation in chitin–diluent binary solutions and the anomalous trend of v′CH–CE line on the phase diagram are both interpreted on the basis of aggregation phenomena.  相似文献   

16.
Intrinsic viscosities have been measured at 25° on five ethylene–propylene copolymer samples ranging in composition from 33 to 75 mole-% ethylene. The solvents used were n-C8 and n-C16 linear alkanes and two branched alkanes, 2,2,4-trimethylpentane and 2,2,4,4,6,8,8-heptamethylnonane (br-C16). This choice was based on the supposition that the branched solvent would prefer the propylene segments and the linear solvent the ethylene segments, due to similarity in shape and possibly in orientational order. It was found that [η]n ? [η]br ≡ Δ[η] is indeed negative for propylene-rich copolymers, zero for a 56% ethylene copolymer, and positive for ethylene-rich copolymers. The Stockmayer–Fixman relation was used to obtain from Δ[η] a molecular-weight independent function of composition. The quantities (Δ[η]/[η])(1 + aM?1/2) and Δ[η]/M are linear with the mole percent ethylene in the range investigated with 200 ≤ a ≤ 2000. The possibility of using these results for composition determination in ethylene–propylene copolymers is discussed. Intrinsic viscosities in the same solvents are reported for two samples of a terpolymer with ethylidene norbornene.  相似文献   

17.
One dihydropyrene–thiophene and a series of three dihydropyrene–phenylenevinylene copolymers were synthesized in this work. The core dihydropyrene unit was shown to remain intact in the polymer backbone by 1H NMR studies. Thermal studies indicated higher stability of the dihydropyrene unit in the copolymers compared with the parent molecule, with one of the dihydropyrene–phenylenevinylene copolymers exhibited a single‐step onset degradation temperature at 400 °C. Extended conjugation effect in the copolymers was evident based on spectroscopic analysis despite a mismatch of macrocyclic dihydropyrene units and small conjugation partners (thiophene and phenylenevinylene). The copolymers exhibited relatively small bandgaps. All four copolymers exhibit blue light emission in photoluminescence studies. Their emission spectra are essentially identical, suggesting that their emission properties were dominated by the dihydropyrene chromophore but independent of the spacer group (thiophene or phenylenevinylene). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1795–1803, 2009  相似文献   

18.
Experimental evidence is presented that describes the mechanism of formation of macroreticular styrene–divinylbenzene copolymers in which phase separation occurs during a suspension polymerization. The mode of formation of the macroreticular structure is described as a three-stage process in which each droplet of the organic phase behaves as an individual in a bulk polymerization that results in a bead of copolymer. Macroreticular structure formation is described by changes in copolymer swelling ratios, infrared absorption spectra of vinyl groups pendent to the polymeric matrices, surface area, total porosity, and pore-size distribution. The proposed mechanism of formation is also substantiated by electron micrographs of the copolymers during various stages of the copolymerization.  相似文献   

19.
Light‐responsive crosslinked structures were prepared by a straightforward quaternization strategy using chloride functional polystyrene copolymers and commercially available Michler's ketone with varying feed ratios. Resulting organogels demonstrated excellent solvent absorption and their swelling characteristics were altered by UV‐light irradiation. According to scanning electron microscope images, UV‐illuminated samples showed an obvious photodecomposition, which enhanced their solvent uptake capacity with increase of UV exposure. Additionally, release behavior of eosin Y as a model compound was determined by UV–vis and fluorescence spectrometers. Achieved photoactive gels were also employed as the reusable heterogeneous initiators for photoinduced free‐radical polymerization of methyl methacrylate. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1275–1282  相似文献   

20.
We report a new series of polyurethane–oligo(phenylenevinylene) (OPV) random copolymers and their self‐assembled nanomaterials such as pores, vesicles, and luminescent spheres. The polymers were synthesized through melt transurethane process by reacting a hydroxyl‐functionalized OPV with diurethane monomer and diol under solvent‐free and nonisocyanate conditions. The amount of OPV was varied up to 50 mol % in the feed to incorporate various amounts of π‐conjugated segments in the polyurethane backbone. The π‐conjugated segmented polymers were subjected to solvent induced self‐organization in THF or THF+water to produce variety of morphologies ranging from pores (500 nm to 1 μm) to spheres (100 nm to 2 μm). Upon shining 370‐nm light, the dark solid nanospheres of the copolymers transformed into blue luminescent nanoballs under fluorescence microscope. The mechanistic aspects of the self‐organization process were studied using solution FTIR and photophysical techniques such as absorption and emission to trace the factors which control the morphology. FTIR studies revealed that the hydrogen bonding plays a significant role in the copolymers with lower amount of OPV units. Time resolved fluorescent decay measurements of copolymers revealed that molecular aggregation via π‐conjugated segments play a major role in the samples with higher OPV content in the random block polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 46: 5897–5915, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号