首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stereochemical analysis of polymers derived from N,N-disubstituted acrylamides is usually difficult. The diad tacticity can be determined from the 1H nuclear magnetic resonance (NMR) signals of the main-chain methylene groups. However, the splitting because of the configurational sequences is poor, even in 13C NMR, which does not allow determination of the tacticity at the triad level. In contrast, the stereochemical analysis of polymers derived from N-monosubstituted acrylamides is easily conducted and the triad tacticity can be determined from the 13C signals of the main-chain methine groups. Thus, stereochemical analysis of N,N-disubstituted polymers should be able to be conducted if the polymers are transformed into N-monosubstituted polymers with retention of the configurational sequence. Poly(N-tert-butyl-N-n-propylacrylamide) was radically prepared, and de-tert-butylation was conducted by treatment with scandium triflate in a mixed solvent of CH3CN and 1,4-dioxane at 50, 80, and 110°C. 1H NMR analysis of the resulting polymers indicated quantitative conversion after 72 hr, regardless of the temperature. 13C NMR analysis of the transformed polymers confirmed that the configurational sequences were retained during the reaction. Thus, the triad stereochemical analysis of N,N-disubstituted polymers was successfully conducted by de-tert-butylation as a polymer reaction, followed by 13C NMR analysis of the transformed polymers.  相似文献   

2.
The assignment of the signals in the 13C and 1H NMR spectra of N-phenyl-2,4-dimethylbuta-1,3-diene-1,4-sultam is difficult for the signal pairs C-2 and C-4, C-1 and C-3, (C-1)? H, (C-2)? CH3 and (C-4)? CH3. The 13C NMR spectrum recorded under gated decoupling conditions provide long-range couplings which make possible an unambiguous assignment of the 13C NMR signal pairs. Application of the 1H CW off-resonance decoupling technique in recording the 13C NMR spectra enables the assignment information from the 13C NMR spectrum to be transferred to the 1H NMR spectrum.  相似文献   

3.
It was found that telechelic isotactic oligo(1-butene) and telechelic oligo(propylene-ran-1-butene) could be isolated as nonvolatile oligomers from polymer residues resulting from the thermal degradation of isotactic poly(1-butene) and poly(propylene-ran-1-butene), respectively. Their structures were determined by 1H and 13C NMR with attention being paid to their reactive end groups. The maximum average number of terminal vinylidene groups per molecule (fTVD) was 1.8, indicating that about 80 mol% were α,ω-diene oligomers having two terminal vinylidene groups. This useful new telechelic oligomer had a lower polydispersity than the original polymer, in spite of its lower molecular weight and Tm. The composition of end groups of nonvolatile oligomers obtained by thermal degradation of poly(propylene-ran-1-butene) could be explained by the differences in bond dissociation energy and activation energy of elementary reactions during thermal degradation, based on the monomer composition of the original polymer.  相似文献   

4.
The composition of polyester polyols derived from terephthalic acid (TPA) and diethylene glycol (DEG) was examined. The synthesis of individual oligomers 1 , n is described. The compounds were characterized with 1H and 13C NMR, mass spectrometry, and elemental analyses. The resonance signals arising from aromatic protons in 1 , n = 1–3 were identified in 1H NMR spectra of TPA‐DEG condensates. From 1H NMR studies and chromatographic separation, it was concluded that the condensation of TPA and DEG in a 1:2 molar ratio results in a mixture of linear oligomers 1 with the average ñ varying from 1.1 to 2.2, and containing about 2% of cyclic oligomer 2 . © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1114–1123, 2003  相似文献   

5.
A new strategy is developed to prepare both α,ω‐dithiol and α,ω‐divinyl linear telechelic polythiolether oligomers by visible light induced thiol‐ene chemistry in the presence of a fac‐Ir(ppy)3 photoredox catalyst. Polythiolether oligomers of well‐defined end groups and controlled molecular weights have been successfully synthesized at varying monomer molar ratios of 1,4‐benzenedimethanethiol (BDMT) to diethylene glycol divinyl ether (DEGVE). 1H NMR and MALDI‐TOF MS analyses demonstrate that as‐prepared polythiolethers possess high end‐group fidelity, which is further supported by the successful polyaddition of polythiolethers bearing α,ω‐dithiol and α,ω‐divinyl groups. For example, with the α,ω‐dithiol‐ (Mn = 1900 g mol?1, PDI = 1.25) and α,ω‐divinyl‐terminated (Mn = 2000 g mol?1, PDI = 1.29) polythiolethers as macromonomers, the molecular weight of resulting polythiolether is up to 7700 g mol?1 with PDI as 1.67. The reactivity of the terminal thiol group is further confirmed by the addition reaction with N‐(1‐pyrenyl)maleimide. UV‐vis spectra and fluorescene measurements suggest that fac‐Ir(ppy)3 undergo a redox quenching process reacted with BDMT to generate thiyl free radicals. With these results, the mechanism of the thiol‐ene reaction catalyzed by photoredox catalyst is proposed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 740–749  相似文献   

6.
Carboxylic acid chloride end‐functionalized all‐aromatic hyperbranched polyesters were prepared from the bulk polycondensation of the AB2 monomer 5‐(trimethylsiloxy)isophthaloyl dichloride. The acid chloride end functionality of the hyperbranched polyester was modified in situ with methanol and yielded methyl ester ends in a one‐pot process. Chain‐end functionalization and esterification were quantitative according to both potentiometric titration and 1H NMR analysis. The signals of 1H and 13C NMR spectra of the esterified hyperbranched polyester were fully assigned from model compounds of the focal, linear, dendritic, and terminal units. The degree of branching and molecular weight averages measured by 1H and 13C NMR spectroscopy and multidetector size exclusion chromatography increased systematically with increasing polymerization temperatures between 80 and 200 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2855–2867, 2002  相似文献   

7.
New 2-substituted diazaphospholane-2-oxides (I-III, V-VIII) and diazaphosphorinane-2-oxide (IV) were synthesised and characterised by 1H, 13C, and 31P NMR, IR spectroscopy, and elemental analysis. The presence of chiral diamino groups in compounds II and V–VIII gives rise to various diastereomers so that the 31P{1H} NMR spectra demonstrated three and two peaks with different ratios, respectively. Also, the 1H and 13C{1H} NMR spectra of compounds II and V–VIII revealed three and two sets of signals for the related conformers (diastereomers). Interestingly, the 31P NMR spectrum of V in D2O indicated a great upfield shift (Δδ = 19.0) for 31P relative to the value obtained in DMSO-d6 (solvent effect). The two signals in V split further to three signals in the presence of β-cyclodextrin. Moreover, conformational analysis of diazaphospholane V was studied by ab initio calculations at the HF and B3LYP levels of theory using the Gaussian 98 program. Results indicated that among four suggested diastereomers (C1–C4) of V, C1 and C3 containing methyl group in the equatorial position are the most stable forms.  相似文献   

8.
High-resolution 1H and 13C NMR spectroscopy, including two-dimensional heteronuclear experiments, has been used to study the microstructure of polyisoprene produced by cationic polymerization. It is shown that macromolecules resulting from both regular and inverse additions are predominantly composed of trans-1,4-units, while 1,2- and 3,4-units are present in small amounts. NMR spectra demonstrate the absence of cis-1,4-units in the polymer, whereas broad signals (pedestals) are related to the presence of saturated structures. It is proposed to determine the content of trans-1,4-, 1,2-, and 3,4-units in cationic polyisoprene via the combined measurements of intensities of signals in the olefinic regions of 1H and 13C NMR spectra.  相似文献   

9.
The composition and properties of the surface layers of poly(styrene/α-t-butoxy-ω-polyglycidol) [poly(styrene/VB-polyGL)] microspheres synthesized by the radical copolymerization of styrene and α-t-butoxy-ω-vinylbenzyl-polyglycidol (VB-polyGL) macromonomers [number-average molecular weight (Mn) = 950 or 2700] were investigated with X-ray photoelectron spectroscopy, 13C NMR, and the adsorption of human serum albumin and γ-globulins. The number-average diameter of the synthesized microspheres was 220 nm. Their surface layers were rich in polyglycidol, with polyglycidol-to-polystyrene unit ratios of 0.443 (VB-polyGL with Mn = 950) and 0.427 (VB-polyGL with Mn = 2700). In suspensions of poly(styrene/VB-polyGL) particles in D2O, the polymer chains in the polyglycidol-rich surface layers were highly mobile, allowing the registration of polyglycidol 13C NMR spectra with standard procedures for polymer solutions. In these spectra, the signals of the relatively immobile polystyrene segments were absent. The spin–lattice relaxation times (T1) measured for polyglycidol in the microsphere surface layers and for VB-polyGL macromonomers in solution were very close, indicating similar degrees of motion in bound (in particle surface layers) and free (in solution) polyglycidol macromolecules. Studies of protein adsorption revealed that hydrophilic polyglycidol layers were protein-repellent. It was found that longer polyglycidol chains in particle surface layers were more mobile (higher T1 values) and provided better protection against protein adsorption. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 615–623, 2004  相似文献   

10.
王斌 《有机化学》2005,25(1):81-85
在65 ℃、氮气保护下, 往咔唑钠的四氢呋喃溶液中缓慢滴加1,4-二氯-2-丁炔. 反应9 h后, 在苯和石油醚混合溶剂中重结晶, 分离得到反式N-3-炔丁烯基咔唑. 在加热, BPO, BF3, FeCl3, P2O5, 紫外或可见光的引发作用下, 反式N-3-炔丁烯基咔唑发生齐聚反应. 通过元素分析, IR, 1H NMR, MS, UV等方法对反应产物进行分析表征. IR和1H NMR图谱显示单体聚合后炔基及其相连氢原子的特征吸收峰(ν: 3278, 2099 cm-1; : 2.8~3.0)消失, VPO法测得齐聚物分子量在8.3×102至1.9×103之间(聚合度4~9).  相似文献   

11.
Two novel oligosaccharides, mono‐ and difructosyllactosucrose {[O‐β‐D ‐fructofuranosyl‐(2 → 1)]n‐β‐D ‐fructofuranosyl‐O‐[β‐D ‐galactopyranosyl‐(1 → 4)]‐α‐D ‐glucopyranoside, n = 1 and 2} were synthesized using 1F‐fructosyltransferase purified form roots of asparagus (Asparagus officinalis L.). Their 1H and 13C NMR spectra were assigned using several NMR techniques. The spectral analysis was started from two anomeric methines of aldose units, galactose and glucose, since they showed separate characteristic signals in their 1H and 13C NMR spectra. After assignments of all the 1H and 13C signals of two units of aldose, they were discriminated as galactose and glucose using proton–proton coupling constants. The HMBC spectrum revealed the galactose residue attached to C‐4 of glucose, fructose residue attached to the C‐1 of glucose, and further fructosyl fructose linkage extended from the glucosyl fructose residues. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Biodegradable poly(trimethylene carbonate) (PTMC) networks were prepared by photopolymerization of linear (L)‐ and star (S)‐shaped PTMC macromonomers for potential tissue engineering scaffold applications. The L‐ (Mn, 6400) and S‐shaped (Mn, 5880) PTMC macromonomers were synthesized using 1,4‐butane diol and 2‐ethyl‐ 2‐hydroxyl‐propane‐1,3‐diol co‐initiated ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of stannous octoate and subsequent acrylation with acryloyl chloride. Chemical structures of the PTMC macromonomers and their corresponding networks were characterized by 1H NMR and 13C NMR spectroscopy. The human endothelial cell line, EA.hy926 was used to test the biocompatibility, cell adhesion, and proliferation behavior of both PTMC networks. The PTMC networks made from the S‐shaped macromonomers exhibited superior cell adhesion and proliferation behavior than those made of the linear macromonomers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The signals in the13C NMR spectra of 2,3,4,5-tetraphenyl-1-germacyclopenta-2,4-dienes (R1=R2=H, Me,cyclo-C3H5, SiMe3, SnMe3, R1=Me, R2=H, Cl) were completely assigned using 2D NMR spectroscopy. The pattern of the variation of the chemical shifts in the13C NMR spectra indicates that the effects of substituents R1 and R2 on the heterocycle and on the phenyl groups are of inductive rather than mesomeric origin and include the direct through-space polarization of bonds (field effect). Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1962–1965, November, 1997.  相似文献   

14.
Research has been carried out to determine the potential of partial least squares (PLS) modeling of mid-infrared (IR) spectra of crude oils combined with the corresponding 1H and 13C nuclear magnetic resonance (NMR) data, to predict the long residue (LR) properties of these substances. The study elaborates further on a recently developed and patented method to predict this type of information from only IR spectra. In the present study, PLS modeling was carried out for 7 different LR properties, i.e., yield long-on-crude (YLC), density (DLR), viscosity (VLR), sulfur content (S), pour point (PP), asphaltenes (Asph) and carbon residue (CR). Research was based on the spectra of 48 crude oil samples of which 28 were used to build the PLS models and the remaining 20 for validation. For each property, PLS modeling was carried out on single type IR, 13C NMR and 1H NMR spectra and on 3 sets of merged spectra, i.e., IR + 1H NMR, IR + 13C NMR and IR + 1H NMR + 13C NMR. The merged spectra were created by considering the NMR data as a scaled extension of the IR spectral region. In addition, PLS modeling of coupled spectra was performed after a Principal Component Analysis (PCA) of the IR, 13C NMR and 1H NMR calibration sets. For these models, the 10 most relevant PCA scores of each set were concatenated and scaled prior to PLS modeling. The validation results of the individual IR models, expressed as root-mean-square-error-of-prediction (RMSEP) values, turned out to be slightly better than those obtained for the models using single input 13C NMR or 1H NMR data. For the models based on IR spectra combined with NMR data, a significant improvement of the RMSEP values was not observed neither for the models based on merged spectra nor for those based on the PCA scores. It implies, that the commonly accepted complementary character of NMR and IR is, at least for the crude oil and bitumen samples under study, not reflected in the results of PLS modeling. Regarding these results, the absence of sample preparation and the straightforward way of data acquisition, IR spectroscopy is preferred over NMR for the prediction of LR properties of crude oils at site.  相似文献   

15.
The usefulness of computer‐assisted aliasing to secure maximal resolution of signal clusters in 1H‐ and 13C‐NMR spectra (which is essential for structure determination by HMBC 2D NMR spectroscopy) in minimal acquisition time is exemplified by the complete characterization of the two complementary p‐octiphenyls 1 and 2 with complex substitution patterns. The need for digital resolution near 1 Hz/pt to dissect the extensive signal clusters in the NMR spectra of these refined oligomers excluded structure determination under routine conditions. High resolution was secured by exploiting the low signal density in the 13C dimension of HMBC spectra by using computer‐assisted aliasing to maximize signal density. Based on the observed shifts in DEPT and 1H‐decoupled 13C‐NMR spectra of 1 and 2 , computer‐assisted aliasing allowed to reduce the number of required time increments by a factor of 20 to 30 compared to full‐width spectra with identical resolution. Without signal‐to‐noise constraints, this computer‐assisted aliasing reduced the acquisition time for high‐resolution NMR spectra needed for complete characterization of refined oligomers 1 and 2 by the same factor (e.g., from over a day to about an hour). With resolved signal clusters in fully aliased HSQC and HMBC spectra, unproblematic structure determination of 1 and 2 is demonstrated by unambiguous assignment of all C‐ and H‐atoms. These findings demonstrate that computer‐assisted aliasing of the underexploited 13C dimension makes extensive molecular complexity accessible by conventional multidimensional heteronuclear NMR experiments without extraordinary efforts.  相似文献   

16.
This article presents a new strategy for synthesizing a series of well‐defined macromonomers. Bromine‐terminated polystyrene and poly(t‐butyl acrylate) with predetermined molecular weights and narrow distributions were prepared through the atom transfer radical polymerization of styrene and t‐butyl acrylate initiated with ethyl 2‐bromoisobutyrate. Then, azido‐terminated polymers were obtained through the bromine substitution reaction with sodium azide. Catalyzed by CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine, the azido end group reacted with propargyl methacrylate via a 1,3‐dipolar cycloaddition reaction, and ω‐methacryloyl‐functionalized macromonomers were thus obtained. The end‐group transformation yields were rather high, as characterized by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra and 1H NMR analysis. By this effective and facile approach, some novel macromonomers that otherwise are difficult to achieve, such as poly(ethylene oxide)‐block‐polystyrene, were easily prepared. Radical homopolymerizations of these macromonomers were performed, and a series of comb polymers were prepared. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6103–6113, 2006  相似文献   

17.
A series of 14 imines containing furoxan and benzene rings has been prepared starting from isosafrole. The structure of reported compounds have been confirmed by elemental analysis, EI MS, UV, IR, and NMR spectroscopy. It is shown that, on treatment with Na2S2O4, the nitro group on the benzene ring was reduced to amino group, but the N→O group of the furoxan ring was not. The 1H‐ and 13C NMR signals are assigned based on their spin‐spin splitting patterns, in some cases, NOESY and HMBC spectra are used. The NOESY spectra indicate that for reported imines, the benzene and the furoxan rings could not be co‐planar; the imine group has E‐configuration.  相似文献   

18.
The phosphonium ylidic diesters, methyl and ethyl isopropyl and, methyl and ethyl t-butyl triphenylphosphoranylidene malonates, 1a,b and 2a,b , respectively, have the syn-anti conformation in solution, as in the crystal, and the bulkier alkoxy group is oriented towards phosphorus. The 1 H NMR spectra show that in 1a,b , the isopropyl group is oriented towards the face of a phenyl group, consistent with π shielding in the 1 H signals, and examination of the 1 H coupled 13 C NMR spectra allows assignment of the acyl carbon signals. Computed bond lengths and angles for isolated molecules are similar to those in the crystal, and the geometry and the NMR spectra indicate extensive ylidic resonance. Estimated partial atomic charges on the ester oxygens are more negative when they are oriented towards, rather than away from, phosphorus.  相似文献   

19.
Octadecyl p‐coumarates undergo E–Z isomerization in daylight. Although 1H NMR, 13C NMR and 1H–1H COSY gave indications about this isomerization, the overlapping of some signals in the 1H NMR of aromatic region prevented the delineation of signals of the individual isomers. However, heteronuclear spin quantum coupling correlation (HSQC) with the unique feature of two sets of nearby δCδH correlations gave conclusive evidence for this isomerization and helped in the delineation of 1H NMR and 13C NMR signals of E‐octadecyl p‐coumarate and Z‐octadecyl p‐coumarate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The addition reaction of 2,2‐bis‐[4‐(2,3‐epoxypropoxy)‐phenyl]‐propane (DGEBA) and preformed complexes of metal ions and disecondary diamines led to a large quantity of cyclic epoxide–amine oligomers. As shown by gel permeation chromatographic analysis, cycles of n = 1, 2, and 3 were formed. Functional epoxide end groups of the prepared oligomers were completely missing in the IR and 1H NMR and 13C NMR spectra. In the fast atom bombardment and matrix‐assisted laser desorption/ionization mass spectra, the molecular ions of the n = 1, 2, 3 cycles of DGEBA and N,N′‐dibenzyl‐5‐oxanonanediamine‐1,9 were detected at m/z = 680, 1361, and 2042. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2047–2052, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号