首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the structure of a primary radical resembles that of the chain end of the polymer radical, the rate of the primary radical termination is approximately the same as the termination rate between the oligomer radical and the polymer radical. The rate constant of termination between polymer radicals of chain length n and s, which involve the primary radicals, is kt,ns = const.(ns)?a. In the polymerization of methacrylonitrile initiated by 2,2′-azobisisobutyronitrile in dimethylformamide at 60.0°C, the value of a is found to be 0.091. From data obtained previously in the bulk polymerization of styrene initiated by 1-azobis-2-phenylethane at 60.0°C, the value of a is found to be 0.167. Because such a values are so large that they are not estimated by the excluded volume, the termination rates are discussed by adding the dependence of the diffusion of the segments to that for chain length.  相似文献   

2.
When a chain length dependence of polymer-polymer termination is given by kt,ns = const. (n?2a + s?2a) where n and s are the chain lengths for the polymer radicals and a is parameter, an instantaneous weight fraction of the non-reacting polymers is derived as: where h and k? are the kinetic parameters, p is a parameter depending on a, and pn is instantaneous number-average chain length. Such a weight fraction corresponds to the experimental one over a wide range of conversion in the polymerization of styrene. On the scope of this correspondence, the polymer-polymer termination rate is estimated as: k?t = 8πR0D1/100 ( = 4πRsDs) where R0 is reaction radius between monomer radicals and D1 is the diffusion coefficient of the monomer; Rs is reaction radius between segment radicals with n ? 100 and Ds is the diffusion coefficient of the segment. The Fujita-Doolittle theory applies to such a rate. Further, the rate also yields 1.5 × 1071./mole-sec, which is the observable extent at conversions less than 0.2.  相似文献   

3.
The kinetics of the free-radical polymerization of methyl methacrylate at 60 °C in the presence of large amounts of n-dodecanethiol (DDM) were investigated as a test at short chain lengths of our recently proposed composite termination model [Smith GB, Russell GT, Heuts JPA. Macromol Theory Simul 2003;12:299]. The experimental data were found to show an unexpected and therefore very interesting trend: at high concentrations of DDM, the rate actually increases as chain lengths become smaller. No termination model can explain this unusual behaviour. However it was found that these results are very successfully described when, in addition to our composite termination model, chain length dependent propagation is included in modelling of the kinetics. These findings have important ramifications for all kinetic studies involving short polymeric radicals, including in low conversion living radical polymerization systems and studies determining the chain length dependence of the termination rate coefficient.  相似文献   

4.
On the basis of simulated data two ways of evaluating individual rate constants by combining kp2/kt and kp /kt (kp , kt = rate constants of chain propagation and termination, respectively) were checked considering the chain‐length dependence of kt. The first way tried to make use of the fact that pseudostationary polymerization yields data for kp2/kt as well as for kp /kt referring to the very same experiment, in the second way kp2/kt (from steady state experiments) and kp/kt data referring to the same mean length of the terminating radical chains were compared. In the first case no meaningful data at all could be obtained because different averages of kt are operative in the expressions for kp /kt and kp2/kt. In spite of the comparatively small difference between these two averages (≈15% only) this makes the method collapse. The second way, which can be regarded as an intelligent modification of the “classical” method of determining individual rate constants, at least succeeded in reproducing the correct order of magnitude of the individual rate constants. However, although stationary and pseudostationary experiments independently could be shown to return the same kt for the same average chain‐length of terminating radicals within extremely narrow limits no reasonable chain‐length dependence of kt could be derived in this way. The reason is an extreme sensitivity of the pair of equations for kp/kt and kp2/kt towards small errors and inconsistencies which renders the method unsuccessful even for the high quality simulation data and most probably makes it even collapse for real data. This casts a characteristic light on the unsatisfactory situation with respect to individual rate constants determined in the classical way, regardless of a chain‐length dependence of termination. As a consequence, all efforts of establishing the chain‐length dependence of kt are recommended to avoid this way and should rather resort to methods based on inserting a directly determined kp into the equations characteristic of kp2/kt or kp/kt, properly considering the chain‐length dependent character of kt.  相似文献   

5.
The chain‐length distributions (CLDs) of polymers prepared by rotating‐sector (RS) techniques under pseudostationary conditions were simulated for the case of chain‐length dependent termination and analysed for their suitability of determining the rate constant of chain propagation kp from the positions of their points of inflection. The tendency to underestimate kp is a little more pronounced than in pulsed‐laser polymerization (PLP) but, interestingly, the situation improves in the presence of chain‐length dependent termination. The estimates also were found to be more precise a) for smaller rates of initiation, b) for higher order points of inflection, c) if termination is by combination, d) if the role played by the shorter one of the two chains becomes less dominant. Taken in all, the determination of kp from the points of inflection in the CLD of RS‐prepared polymers may well compete with the more famous PLP method, especially if some care is taken with respect to the choice of experimental conditions.  相似文献   

6.
We derive the exact time-evolution for a general quantum system under the influence of a bosonic bath that causes pure phase noise and demonstrate that for a Gaussian initial state of the bath, the exact result can be obtained also within a perturbative time-local master equation approach already in second order of the system–bath coupling strength. We reveal that this equivalence holds if the initial state of the bath can be mapped to a Gaussian phase-space distribution function. Moreover, we discuss the relation to the standard Bloch–Redfield approach.  相似文献   

7.
In order to analyze the polymerization rate at high initiation rate and/or low monomer concentration, the rate equations are derived by a rate formulated previously for polymer–polymer termination and another rate for primary radical termination, which is formulated here (both rates depend on chain length of polymer radical). Such equations would be applicable to the kinetic data in the polymerizations of styrene and methyl methacrylate. This shows that the assumption that both rates are independent of chain length overestimates the rate of primary radical termination.  相似文献   

8.
The correct (event-weighted) average of kt, 〈kt〉, has been calculated from simulation data for pseudostationary laser-induced polymerization for a kinetic scheme with chain-length dependent termination and compared to the average t which is obtained by employing the formal procedures, originally designed for the evaluation of individual rate constants from rate data in the case of chain-length independent termination. Satisfactory (and in fact excellent) results are obtained only if the complete equation for the conversion per laser pulse is solved for t. This leads to an almost perfect recovery of the power-law governing the dependence of kt on chain-length, especially the exponent.  相似文献   

9.
The use of direct counts of molecular energy level degeneracies, P(E), t internal energy, E, RRKM unimolecular reaction rate calculations is clarified. Highly accurate densities of states for use in practical rate calculations can be obtained by utilizing an energy level “grain” size of 1–5 cm?1 and by suitable averaging of P(E) over small energy intervals. An easily programmed algorithm for rounding energy levels to multiples of this “grain” size is given and applied to sum and density calculations.  相似文献   

10.
In polymerization with primary radical termination, when reaction between primary radicals, which escape from solvent cage, is not negligible, a relation between chain length and polymerization rate is found regardless of tractable approximate procedures. Such a relation is applied to the kinetic data obtained in the polymerizations of methyl methacrylate (MMA) and vinyl acetate (VA) initiated by 2,2′-azobis(2,4-valeronitrile) at 50.0°C. Further, when the primary radical termination is high, an initiator efficiency can not be approximated to a ratio of the primary radicals escaping from the cage to the total primary radicals formed in the cage. In the polymerization of MMA, after the primary radicals escapes from the cage, they immediately react with the monomer. Thus, the reaction between the primary radicals is not significant. However, in the polymerization of VA, the rate of reaction between the primary radical and the monomer might be comparable to the rate of reaction between the primary radicals when the initiator concentration is quite high.  相似文献   

11.
12.
The photosensitized polymerization of styrene in bulk was investigated in the temperature range of 25–70°C with respect to the average rate coefficient of bimolecular chain termination t, especially its chain length dependence at low conversions, by means of pulsed laser polymerization (PLP). Three methods were applied: two of them were based on equations originally derived for chain length independent termination taking the quantity kt contained therein as an average t, while the third one consisted in a nonlinear fit of the experimental chain length distribution (CLD) obtained at very low pulse frequencies (LF‐PLP) to a theoretical equation. The exponent b characterizing the extent of chain length dependence was unanimously found to decrease from about 0.17–0.20 at 25°C to 0.08–0.11 at 70°C, slightly depending on which of the three methods was chosen. This trend toward more “ideal” polymerization kinetics with rise of polymerization temperature is tentatively ascribed to a quite general type of polymer solution behavior that consists in a (slow) approach to a lower critical solution temperature (LCST), which is associated with a decrease of the solvent quality of the monomer toward the polymer, an effect that should be accompanied with a decrease of the parameter b. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 697–705, 2000  相似文献   

13.
In this work, the zero coverage adsorption properties of C5–C10 n- and iso-alkanes on the UiO-66, UiO-66-Me and UiO-66-NO2 metal–organic frameworks are studied by gas phase pulse chromatography. Analysis of enthalpy values, entropy values, Gibbs free energies and Henry constants reveals unusual chain length dependent adsorption behaviour of linear and branched alkanes, caused by the complex structure of the zirconium metal–organic framework UiO-66. The UiO-66 structure consists of a small, tetrahedral and large, octahedral cage. It is shown that at specific carbon chain lengths (e.g. C6–C7 for n-alkanes), distinctive jumps in adsorption enthalpy, entropy values and Henry constants occur. This chain length dependent effect is even more pronounced for 2- and 3-methyl alkanes and double branched alkanes. This distinctive shift in adsorption behaviour occurs at a molecular size that coincides with the cavity dimensions of the smallest, tetrahedral cage. The resulting selective adsorption arises from confinement effects and is function of both the molecular shape and size.  相似文献   

14.
Following earlier suggestions the values for the rate coefficient of chain termination kt in the bulk polymerization of styrene at 25°C were formally calculated (a) from the second moment of the chainlength distribution (CLD) and (b) from the rate equation for laser-initiated pseudostationary polymerization (both expressions originally derived for chain-length independent termination) by inserting the appropriate experimental data including the rate constant of chain propagation kp. These values were treated as average values, k and k , respectively. They exhibited good mutual agreement, even the predicted gradation (k < k by about 20%) was recovered. The log-log plot of kt vs. the number-average degree of polymerization of the chains at the moment of their termination yielded exponents b of 0.16–0.18 in the power-law kt = A · Pn −b, A ranging from 2.3 × 108 to 2.7 × 108 L · mol−1 · s−1. These data are only slightly affected if termination is not assumed to occur by recombination only and a small contribution of disproportionation is allowed for.  相似文献   

15.
The values for the rate coefficient of chain termination kt in the bulk polymerization of methyl methacrylate at 25°C were formally calculated (i) from the second moment of the chain-length distribution and (ii) from the rate equation for laser-initiated pseudostationary polymerization (both expressions were originally derived for chain-length independent termination) by inserting the appropriate experimental data including the rate constant of chain propagation kp. These values were treated as average values, k and k , respectively. They exhibited good mutual agreement, even the predicted gradation (k < k by about 20%) was recovered. The log-log plot of kt vs. the average degree of polymerization of the chains at the moment of their termination v′ yielded exponents b of 0.16–0.17 in the power-law k t = A · v−b, A ranging from 1.1 × 108 to 1.3 × 108 (L · mol−1 · s−1). A 70% contribution of disproportionation to overall termination has been assumed in the calculations.  相似文献   

16.
17.
18.
19.
20.
The segment-cloud model for polymer molecules has been used, and the second virial coefficient A2 obtained as a function of the interaction parameter z for linear and branched chains having different values of n. It is observed that the chain length effect, though much smaller than in the perturbation theory, increases as the degree of branching increases. Also, the branching parameter g is found to be a better correlating parameter than the segment density distribution for A2. This is in contrast to earlier results for the perturbation theory of the excluded volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号