首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The i.r. and RR spectra of twenty Fe(TPP)LL′ type complexes have been measured to locate structure-sensitive bands. In i.r. spectra, band I (1350-1330 cm−1) and band III (469-432 cm−1) are spin-state sensitive whereas band II (806-790 cm−1) is oxidation-state sensitive and slightly spin-state sensitive in the Fe(II) state. To examine the nature of these bands, the i.r. spectra of Co(TPP), (Fe(TPP))2O and their d8 and d20 analogs have been measured, and empirical assignments proposed. In RR spectra, band C (1545-1498 cm−1, ap) and band D (1565-1540 cm−1, p) are spin-state sensitive whereas band E (391-376 cm−1, p) is sensitive to both spin and oxidation states. These results on RR spectra are in good agreement with those of previous workers.  相似文献   

2.
The spin-crossover system [Fe(btpa)](PF(6))(2) (btpa = N,N,N',N'-tetrakis(2-pyridylmethyl)-6,6'-bis(aminomethyl)-2,2'-bipyridine) and the predominantly low-spin species [Fe(b(bdpa))](PF(6))(2) ((b(bdpa) = N,N'-bis(benzyl)-N,N'-bis(2-pyridylmethyl)-6,6'-bis(aminomethyl)-2,2'-bipyridine) have been characterized by means of X-ray diffraction. The unit cell of [Fe(btpa)](PF(6))(2) contains two crystallographically independent molecules revealing octahedral low-spin and quasi-seven-coordinated high-spin structures. The unit cell of [Fe(b(bdpa))](PF(6))(2) contains two crystallographically independent molecules one of which corresponds to a low-spin structure, while the other reveals a disordering. On the basis of magnetic susceptibility and M?ssbauer measurements, it has been proposed that this disorder involves low-spin and high-spin six-coordinated molecules. The structures of [Zn(btpa)](PF(6))(2) and [Ru(btpa)](PF(6))(2) have been determined also. Pulsed laser photoperturbation, coupled here with time-resolved resonance Raman spectroscopy (TR(3)), has been used to investigate, for the first time by this technique, the relaxation dynamics in solution on nanosecond and picosecond time scales of low-spin, LS ((1)A) --> high-spin, HS ((5)T) electronic spin-state crossover in these Fe(II) complexes. For the nanosecond experiments, use of a probe wavelength at 321 nm, falling within the pi-pi transition of the polypyridyl backbone of the ligands, enabled the investigation of vibrational modes of both LS and HS isomers, through coupling to spin-state-dependent angle changes of the backbone. Supplementary investigations of the spin-crossover (SCO) equilibrium in homogeneous solution and in colloidal media assisted the assignment of prominent features in the Raman spectra of the LS and HS isomers. The relaxation data from the nanosecond studies confirm and extend earlier spectrophotometric findings, (Schenker, S.; Stein, P. C.; Wolny, J. A.; Brady, C.; McGarvey, J. J.; Toftlund, H.; Hauser, A. Inorg. Chem. 2001, 40, 134), pointing to biphasic spin-state relaxation in the case of [Fe(btpa)](PF(6))(2) but monophasic in the case of [Fe(b(bdpa))](PF(6))(2). The picosecond results suggest an early process complete in 20 ps or less, which is common to both complexes and possibly includes vibrational relaxation in the initially formed (5)T(2) state.  相似文献   

3.
Publications on surface-enhanced Raman scattering (SERS) in metal sols are perused. The discrepancy between extinction spectra for freshly formed sols and the SERS excitation spectra is found to be connected with different temperature modes used in different procedures for obtaining sols, the temperature difference leading to different concentrations of metal adatoms on sol particles. Once the presence of adatoms is accounted for, the nature of “hot” sol particles, which ensure the observation of values of the SERS enhancement coefficient G?1014?1015, can be explained and the reasons for the scarcity of such particles can be established. On compact hot sol particles, rigorous calculations of electromagnetic enhancement G em in most cases yield G em≤ 1014. That is why combining the coefficient σb of gigantic amplification of background, which is caused by electron RS in metal and which is connected with the existence of adatoms, with the coefficient σsi of SERS enhancement in a metal-metal adatom-adsorbate adsorption complex gives σbσsi ≥ 108.  相似文献   

4.
This article discusses the use of Raman spectroscopy, in concert with density functional theory, as a strategy for understanding excited-state structure in metal polypyridyl complexes. The first sections of the article discuss how one can use resonance Raman spectra of the ground-state molecule to understand the resonant Franck-Condon excited state. The theories behind these analyses are based on the sum-over-states and time-dependent approaches; a brief introduction to each of these methods is given. The use of density functional theory and its use in the determination of normal modes of vibration and infrared and Raman band intensities are discussed, with reference to a number of recent papers. The application of these methods is illustrated through the analysis of a number of selected examples which exemplify the strategies used to extract data from probing the Franck-Condon region. These data include the displacements of the resonant excited state with respect to the electronic ground state, the reorganisation energies associated with photoexcitation, bond length changes with excitation and other electronic parameters. The use, and limitations, of these methods are discussed. The direct calculation of resonance Raman band intensities is introduced. The direct measurement of excited-state vibrational spectra through time-resolved methods is discussed in the latter section of the article; with particular regard to the use of transient resonance Raman and time-resolved resonance Raman techniques to probe structural changes in metal polypyridyl complexes.  相似文献   

5.
A simple and effective surface-enhanced Raman scattering (SERS)-based protocol for the detection of protein-small molecule interactions has been developed. We employed silver-coated magnetic particles (AgMNPs), which can provide high SERS activity as a protein carrier to capture a small molecule. Combining magnetic separation and the SERS method for protein detection, highly reproducible SERS spectra of a protein-small molecule complex can be obtained with high sensitivity. This time-saving method employs an external magnetic field to induce the AgMNPs to aggregate to increase the amount of atto610-biotin/avidin complex in a unit area with the SERS enhancement. Because of the contribution of the AgMNP aggregation to the SERS, this protocol has great potential for practical high-throughput detection of the protein-small molecule complex and the antigen-antibody immunocomplex.  相似文献   

6.
The resonance Raman spectra of all-trans carotenoids have been observed in the region of 5000-500 cm−1 for samples in glassy solution at 77 K and in the in vivo state at room temperature. Prominent bands in the wavenumber region higher than 2000 cm−1 are assigned to either overtones or combinations of three modes due to skeletal stretches and the CH3 in-plane rock. From the wavenumbers of the observed Raman bands, anharmonicity constants for these three modes (including cross-term constants) are obtained. It is found that, for each carotenoid studied, the cross-term anharmonicity constant between the CC and CC stretches is significantly larger than the other anharmonicity constants.  相似文献   

7.
The basis of the static model for the classification of mixed-valence complexes is outlined. The resonance Raman spectra of a variety of mixed-valence complexes are described, and it is shown how these spectra may be used to differentiate between certain classes of mixed-valence complex.  相似文献   

8.
The IR and resonance Raman spectra of the nickel(II) complexes of dibenzo[b,i][1,4,8,11]tetraaza[14]annulene (TAA) and 5,7,12,14-tetramethyldibenzo[b,i][1,4,8,11]tetraaza[14]annulene (TMTAA) have been measured and compared with ab initio calculations of the vibrational wavenumbers at the B3-LYP level using the LanL2DZ basis set. An excellent fit is found between the experimental and calculated data, enabling precise vibrational assignments to be made. Surface-enhanced resonance Raman spectra were obtained following adsorption on Ag electrodes, with potentials in the range -0.1 to -1.1 V vs Ag/AgCl. There is evidence for contributions from both the electromagnetic and charge transfer (CT) surface enhancement mechanisms. The data indicate that variations in band intensities with electrode potential can be interpreted in terms of the CT mechanism.  相似文献   

9.
Surface-enhanced resonance Raman scattering (SERRS) from the alpha-diimine complexes [Ru(bpm)(3)](2+) and [Ru(bpz)(3)](2+) is reported for the first time at a roughened silver electrode. In both cases, a possible adsorbate orientation has been proposed involving binding through nitrogen lone pair electrons to the silver surface, based on changes in band positions upon adsorption. The SERRS spectra of [Ru(bpm)(3)](2+) were found to change slightly with a change in applied potential. The relative intensity of the nu(C6C6') band was found to be dependent on both excitation wavelength and applied potential. This was ascribed to an active charge transfer (CT) mechanism operating synergistically with the electromagnetic mechanism. No such CT activity was observed in [Ru(bpz)(3)](2+). It is tentatively suggested that this behavior may arise from the different modes of adsorption of the two complexes.  相似文献   

10.
We present a simple theoretical model which qualitatively explains the previously reported unusual features of the resonance Raman (RR) excitation profiles of electron donor/acceptor complexes of TCNE with aromatic donors, in particular the pronounced red-shift of the RR excitation profile vis à vis the absorption spectrum.  相似文献   

11.
《Vibrational Spectroscopy》2010,52(2):213-217
In this work, from the discussion on water structure and clusters, it can be deduced that the OH stretching vibration is closely related to local hydrogen-bonded network for a water molecule, and different OH vibrations can be assigned to OH groups engaged in various hydrogen bonding. At ambient condition, the main local hydrogen bonding for a molecule can be classified as DDAA (double donor–double acceptor), DDA (double donor–single acceptor), DAA (single donor–double acceptor) and DA (single donor–single acceptor) and free OH vibrations. As for water at 290 K and 0.1 MPa pressure, the OH stretching region of the Raman spectrum can be deconvoluted into five sub-bands, which are located at 3014, 3226, 3432, 3572, and 3636 cm−1, and can be assigned to νDAA-OH, νDDAA-OH, νDA-OH, νDDA-OH, and free OH2 symmetric stretching vibrations, respectively.  相似文献   

12.
In this work, from the discussion on water structure and clusters, it can be deduced that the OH stretching vibration is closely related to local hydrogen-bonded network for a water molecule, and different OH vibrations can be assigned to OH groups engaged in various hydrogen bonding. At ambient condition, the main local hydrogen bonding for a molecule can be classified as DDAA (double donor–double acceptor), DDA (double donor–single acceptor), DAA (single donor–double acceptor) and DA (single donor–single acceptor) and free OH vibrations. As for water at 290 K and 0.1 MPa pressure, the OH stretching region of the Raman spectrum can be deconvoluted into five sub-bands, which are located at 3014, 3226, 3432, 3572, and 3636 cm−1, and can be assigned to νDAA-OH, νDDAA-OH, νDA-OH, νDDA-OH, and free OH2 symmetric stretching vibrations, respectively.  相似文献   

13.
Nonresonant Raman spectra and conformational stability are studied for thioanisole (TA) and substituted analogues [4-XTA, X = NO(2) (1), CN (2), H (3), CH(3) (4), and NH(2) (5)] at the 4-position. The ring-substituent (SCH(3)) vibrational modes of out-of-plane bending and torsional types are calculated to have strong Raman scattering activities only for the vertical conformers. Agreement between observed and calculated Raman spectra is analyzed numerically. The conformational stability of the SCH(3) rotation changes systematically to the electron-withdrawing character of the substituents. The rotational barrier is calculated satisfactorily by B3LYP/6-31++G(d,p) calculations, whereas the second- to fourth-order M?ller-Presset perturbation theory and coupled-cluster with single- and double-excitation calculations tend to overestimate conformational energy barriers with respect to coplanar forms. The coplanar form is obtained for 1 and 2, whereas the vertical conformer is favorable for 4 and 5. The origin of the conformational energy difference, DeltaE, is demonstrated on the basis of canonical molecular orbitals and natural bond orbitals (NBOs) of the ground state. The natural bond orbital interaction between a nonbonding n(S) orbital of the S atom and a pi orbital of the benzene ring is shown to stabilize the coplanar form predominantly. A linear relationship is obtained between the energy of the highest occupied molecular orbitals and DeltaE. The n(S)-pi interaction energy, E(2), based on the NBO representation and the Hammet constants also change linearly with respect to DeltaE.  相似文献   

14.
Axial ligand substitution of a mononuclear nonheme oxoiron(IV) complex, [FeIV(O)(TMC)(NCCH3)]2+ (1) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), leads to the formation of new FeIV=O species with relatively intense electronic absorption features in the near-UV region. The presence of these near-UV features allowed us to make the first observation of Fe=O vibrations of S = 1 mononuclear nonheme oxoiron(IV) complexes by resonance Raman spectroscopy. We have also demonstrated that the reactivity of nonheme oxoiron(IV) intermediates is markedly influenced by the axial ligands.  相似文献   

15.
Detailed analysis of Raman and Raman optical activity (ROA) of L-alanine zwitterion (ALAZW) revealed that shapes of the spectral bands are to a large extent determined by the rotation of the NH(3)(+), CO(2)(-), and CH(3) groups. Aqueous solution ALAZW spectra were measured down to 100 cm(-1) and compared to complex simulations based on ab initio (B3LYP/CPCM/6-31++G**) computations of molecular energies and spectral parameters. The bands exhibit different sensitivities to the motion of the rotating group; typically, for more susceptible bands the Raman signal becomes broader and the ROA intensity decreases. When these dynamical factors are taken into account in Boltzmann averaging of conformer contributions, simulated spectra not only better agree with the experiment, but shapes of the rotational potentials can be estimated. Effects of the molecular flexibility could be also demonstrated on differences in Raman spectra of the solution, crystalline, and glass (gellike) solid states of ALAZW. Experimental Raman and ROA spectra of four model dipeptides of different rigidities (Ala-Pro, Pro-Ala, Pro-Gly, and Gly-Pro) indicate that the broadening of spectral lines can be used as a general site-specific indicator of molecular rigidity or flexibility.  相似文献   

16.
As a kind of glycoprotein, carcinoembryonic antigen (CEA) is the important tumor marker for clinical diagnosis of the presence or recurrence of cancer. In this work, a novel label-free resonance light scattering (RLS) spectral CEA assay was developed based on the combination of highly selective immunoreaction and ultrasensitive RLS technique. In Tris–HCl buffer solution (pH 7.5), the specific immunoreaction between CEA antigen and mouse anti-CEA formed immune complexes which had a maximum RLS spectral peak at 389.0 nm, with the existence of physiological saline and polyethylene glycol 20,000 (PEG 20,000). Under the optimal conditions, the magnitude of enhanced RLS intensity (ΔIRLS) was proportional to the concentration of CEA in the range from 0.1 to 60 ng mL−1, with a detection limit (LOD, 3σ) of 0.03 ng mL−1. The characteristics of RLS, the CEA immunocomplex, the immune response, the ratio of CEA antigen and mouse anti-CEA, and the optimum conditions of the immunoreaction have been investigated. The CEA concentrations of 20 serum specimens detected by the developed assay showed consistent results in comparison with those obtained by commercially available enzyme-linked immunosorbent assay (ELISA) kit. And this method has many satisfying merits including label-free, sensitivity and high selectivity.  相似文献   

17.
The frequencies, relative scattering cross sections and depolarizations ratios of forbidden fundamental and overtone Raman bands have been measured for the first time in the gaseous state. The absolute scattering cross sections of the allowed bands of gaseous SF6 are given as well. The characteristic density dependence of the scattering cross sections of the forbidden fundamentals is explained in terms of collision induced Raman scattering. There is evidence for frame distortion of the molecules during the collision.  相似文献   

18.
The efficient conversion of the second and third harmonics of a Nd YAG laser to near UV radiation in the 395–500 nm range by stimulated Stokes (and anti-Stokes) Raman scattering (SRS) in a 1 m Raman oscillator containing compressed H2 or D2 is used as an excitation source for spontaneous resonance Raman spectroscopy (RRS). SRS excited RR spectra are shown for the anion radical of tetracyanoquinodimethane (TCNQ).  相似文献   

19.
The copolymers of methacrylic acid with protoporphyrin IX (PPIX) and the metal complexes, zinc protoporphyrin IX and magnesium protoporphyrin IX were synthesised and characterised. Corresponding acrylic acid copolymers were also synthesised. The steady state absorption and fluorescence spectral properties of the macromolecular bound fluorophores PPIX, Zn-PPIX and Mg-PPIX were investigated. Poly(methacrylic acid) bound protoporphyrin IX, zinc protoporphyrin IX and magnesium protoporphyrin IX show an increase in the fluorescence intensity and lifetime with increase in the pH in the range 2-8 with a marked transition around pH 6.0-7.0. The fluorophore concentration in the dilute solution of the copolymers is micromolar and the fluorophore to the carboxylic acid monomer ratios in the copolymer is around 10−3. The molecular weight of the copolymers is 100 ± 10 kD. The fluorescence decay curves of all the fluorophore bound polymers follow biexponential decay fit independent of pH. Poly(MAA-co-PPIX) and poly(MAA-co-MgPPIX) undergo well marked pH induced structural transitions in the pH range of 6.0-7.0 whereas poly(MAA-co-ZnPPIX) undergoes pH induced structural transitions in the pH range of 4.0. In the case of polyacrylic acid copolymers the changes observed in the steady state and time resolved fluorescence studies are less marked. The distinct hydrophobic and hydrophilic environments experienced by the fluorophore bound to PMMA are attributed to the dynamics of the macromolecules in dilute aqueous solutions manifested by the α-methyl group present in the copolymer. The studies carried out using the fluorophores in the time windows from 2 ns to 12 ns indicate evolving trends in the dynamic coiling and reverse coiling of poly methacrylic acid chain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号