首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
以偶氮二异丁腈为引发剂,四(3-巯基丙酸季戊四醇四酯)(PETMP)为链转移剂进行甲基丙烯酸甲酯(MMA)的自由基聚合,得到了含有残余巯基的聚甲基丙烯酸甲酯大分子链转移剂(HS-PMMA).然后,以HS-PMMA作为大分子链转移剂进行甲基丙烯酸叔丁酯(tBMA)的自由基聚合,合成了杂臂星形聚合物.最后,将所得杂臂星形聚合物的PtBMA链段水解得到了两亲性杂臂星形聚合物.  相似文献   

2.
石艳 《高分子科学》2008,(3):321-329
Heteroarm star-shaped polymers were synthesized by conventional free radical polymerization in two steps by the use of polyfunctional chain transfer agent.In the first step,free radical polymerization of methyl methacrylate was carried out in the presence of a polyfunctional chain transfer agent,pentaerythritol tetrakis(3-mercaptopropinate).At appropriate monomer conversions,two-arm PMMA having two residual thiol groups at the chain center or three-arm PMMA having one residual thiol group at the core wer...  相似文献   

3.
Bulk atom transfer radical polymerization (ATRP) of styrene was carried out at 110 °C using benzal bromide as bifunctional initiator and 1-bromoethyl benzene as monofunctional initiator. CuBr/2,2′-bipyridyl was used as the ATRP catalyst. The polymerization kinetic data for styrene with both initiators was measured and compared with a mathematical model based on the method of moments and another one using Monte Carlo simulation. An empirical correlation was incorporated into the model to account for diffusion-controlled termination reactions. Both models can predict monomer conversion, polymer molecular weight averages, and polydispersity index. In addition, the Monte Carlo model can also predict the full molecular weight distribution of the polymer. Our experimental results agree with our model predictions that bifunctional initiators can produce polymers with higher molecular weights and narrower molecular weight distributions than monofunctional initiators. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2212–2224, 2007  相似文献   

4.
Group transfer polymerization was used to synthesize several series of hydrophilic random and model networks. Cationic random networks were prepared both in bulk and in tetrahydrofuran (THF) using a monofunctional initiator and simultaneous polymerization of monomer and branch units, while a bifanctional initiator was employed in THF for the synthesis of model networks comprising basic or acidic chains. Upon polymerization of the monomer, the latter initiator gives linear polymer chains with two “living” ends, which are subsequently interconnected to a polymer network by the addition of a branch unit. Homopolymer network star polymers were also synthesized in THF by a one‐pot procedure. The synthesis involved the use of a monofunctional initiator and the four‐step addition of the following reagents: (i) monomer, to give linear homopolymers; (ii) branch unit, to form “arm‐first” star polymers; (iii) monomer, to form secondary arms and give “in‐out” star polymers; and, finally (iv) branch unit again, to interconnect the “in‐out” stars to networks. Different networks were prepared for which the degree of polymerization (DP) of the linear chains between junction points was varied systematically. For all networks synthesized, the linear segments, the “arm‐first” and the “in‐out” stars were characterized in terms of their molecular weight (MW) and molecular weight distribution (MWD) using gel permeation chromatography (GPC). The degrees of swelling of both the random and model networks in water were measured and the effects of DP, pH, and monomer type were investigated.  相似文献   

5.
In the first paper of the series, a statistical model for star-branched polycondenzation of AB type monomers in the presence of a polyfunctional agent RAf was completely developed. The analytical expressions obtained for the number-average (D̄P̄) and weight-average (D̄P̄) degree of polymerization, and the dispersion index (D) for whole polymer species, linear and star macromolecular chains, are now derived as function of the feed and of end-group analysis. Also the important molecular parameter, mole fraction of star-branched polymer, can be evaluated. Some numerical examples are presented. It is illustrated that the molecular weight properties of the linear and star-branched polymers in the mixture of the products, very important factors for the application of this kind of polymeric materials, can be determined starting from the feed and terminal group analysis. Polymerization and oligomerization of 6-aminocaproic acid were carried out in the presence of trimesic (T3) acid and 2,2,6,6-tetra(β-carboxyethyl)cyclohexanone (T4) and EDTA as tri- and terra-functional agents. The molecular weights calculated are in good agreement with those obtained by Size Exclusion Chromatography (SEC), end group analysis and NMR spectra.  相似文献   

6.
In this part of the series, the influence of polyfunctional chain transfer agents with transfer constant C ≤ 1 on the molecular weight distribution was studied. The analytical expressions for the number- and weight-average degree of polymerization, and dispersion index were derived by kinetic and statistical methods. The expression for the molecular weight distribution can only be obtained by statistical methods. Some numerical examples on the dependence of distribution parameters as a function of the functionality of transfer agents f and transfer constants are illustrated. A critical value of the chain transfer constant was found to exist, which permits the synthesis of linear (for f = 2) or branched polymers (f > 2) with DP w/DP n approximately equal to 2 during the entire course of the polymerization.  相似文献   

7.
The synthesis of a three‐armed polymer with an isocyanurate–thiourethane core structure is described. Monofunctional reversible addition–fragmentation chain transfer (RAFT) agent 2 and trifunctional RAFT agent 5 were prepared from mercapto‐thiourethane and tris(mercapto‐thiourethane), which were obtained from the aminolysis of mono‐ and trifunctional five‐membered cyclic dithiocarbonates, respectively. The radical polymerization of styrene in the presence of 2,2′‐azobis(isobutyronitrile) and RAFT agent 2 in bulk at 60 °C proceeded in a controlled fashion to afford the corresponding polystyrene with desired molecular weights (number‐average molecular weight = 3000–10,100) and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.13). On the basis of the successful results with the monofunctional RAFT agents, three‐armed polystyrene with thiourethane–isocyanurate as the core structure could be obtained with trifunctional RAFT agent 5 in a similar manner. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5498–5505, 2005  相似文献   

8.
Polystyrene microspheres have been synthesized by the reversible addition-fragmentation chain transfer (RAFT) mediated dispersion polymerization in an alcoholic media in the presence of poly(N-vinylpyrrolidone) as stabilizer and 2,2′-azobisisobutyronitrile as a conventional radical initiator. In order to obtain monodisperse polystyrene particles with controlled architecture, the post–addition of RAFT agent was employed to replace the weak point from the pre-addition of RAFT. The feature of preaddition and postaddition of RAFT agent was studied on the polymerization kinetics, particle size and its distribution and on the particle stability. The living polymerization behavior as well as the particle stability was observed only in the postaddition of RAFT. The effects of different concentration on the postaddition of RAFT agent were investigated in terms of molecular weight, molecular weight distribution, particle size and its distribution. The final polydispersity index (PDI) value, particle size and the stability of the dispersion system were found to be greatly influenced by the RAFT agent. This result showed that the postaddition of RAFT agent in the dispersion polymerization not only controls the molecular weight and PDI but also produces stable monodisperse polymer particles.  相似文献   

9.
The story of the outset of the concept of immortal polymerization is presented. Immortal polymerization is the polymerization that gives polymers with a narrow molecular distribution, even in the presence of a chain transfer reaction, because of its reversibility, which leads to the revival of the polymers once dead, that is, the immortal nature of the polymers. As a result, immortal polymerization can afford polymers with a controlled molecular weight, the number of polymer molecules being more than that of the initiator. The compound that plays a leading role is metalloporphyrin, in which the metal‐axial ligand bond has an unusually high reactivity. Immortal polymerization can be carried out in the ring‐opening polymerizations of epoxides, episulfides, and lactones by the selection of an appropriate metalloporphyrin as the initiator and a protic compound as the chain transfer agent. Immortal polymerization is an effective method for synthesizing end‐functional polymers and oligomers with narrow molecular weight distributions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2861–2871, 2000  相似文献   

10.
Mercapto-16-crown-5 was prepared starting from tetraethyleneglycol and 3-chloro-2-chloromethyl-1-propene. Radical polymerization of methyl methacrylate was carried out in the presence of mercapto-16-crown-5 as a chain transfer agent to give crown ether-terminated poly(methyl methacrylate). The end crown group was characterized by IR and 1H-NMR spectra. Sodium cation was selectively extracted by this crown-containing polymer. The molecular weight of the obtained polymer had influence upon the ability of extraction of sodium cation.  相似文献   

11.
Ring-opening polymerization of epoxide initiated by aluminium porphyrin gives polyether with narrow molecular weight distribution even in the presence of chain transfer agent such as alcohol. This is due to the rapid, reversible exchange between (porphinato)aluminium alkoxide as the growing species and alcohol. As a result, the growing polymer molecules never die, and the reaction may be called ‘immortal’ polymerization.  相似文献   

12.
采用Z基团为—CH2C6H5的RAFT试剂为链转移剂,AIBN为引发剂,60℃下进行甲基丙烯酸甲酯/丙烯酸丁酯(MMA/BA)的本体RAFT共聚合,并用GPC法测算不同单体组成下低聚物RAFT的链转移常数(Ctr).实验表明,对BA的均聚合,Ctr高达116,但对MMA的均聚合,Ctr约为0.1.在共聚体系中,Ctr与fMMA之间为非线性关系,随着fMMA的增加呈下降趋势.Ctr随单体组成的变化规律可以很好地解释不同单体组成下RAFT共聚合中分子量及其分布随转化率变化的规律.  相似文献   

13.
以钴Ⅱ肟氟化硼络合物(CoBF)为催化剂,2,2′-偶氮二异丁腈(AIBN)为引发剂,实现了甲基丙烯酸甲酯(MMA)与γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)在60℃甲苯体系中的催化链转移聚合(catalytic chaintransfer polymerization,CCTP),制备出末端含有双键的共聚物.利用核磁共振证明了其末端双键的存在,并通过热重分析证明CCTP产物与自由基聚合产物的结构区别.用凝胶渗透色谱(GPC)对7种单体组成下不同催化剂CoBF用量的聚合产物进行分子量表征,结果表明以催化链转移聚合合成的共聚物具有分子量低及分子量分布较窄,且聚合物的分子量随着催化剂CoBF的增加呈明显下降趋势.又分别采用了基于DPn(数均聚合度)、DPw(重均聚合度)的Mayo方程和基于ΛP、ΛH的链长分布方程计算出催化剂的表观链转移常数,发现基于DPw的Mayo方程和基于ΛP的链长分布方程的计算结果最为接近.并通过对共聚体系中不同单体组成的研究发现,催化剂表观链转移常数随着单体组成中MPS的增加而增加.  相似文献   

14.
The reversible addition-fragmentation chain transfer polymerization of diisopropyl fumarate (DiPF) was carried out using ethyl 2-[[(dodecylthio)thioxymethyl]thio]-2-methylpropionate (T1) and 1,1′-(1,2-ethanediyl) bis[2-[[(dodecylthio)thioxymethyl]thio]-2-methylpropionate] (T2) as the monofunctional and difunctional chain transfer agents (CTAs) to synthesize poly(diisopropyl fumarate) (PDiPF) with a rigid chain conformation. The obtained PDiPF had a well-controlled molecular weight, molecular weight distribution, and structure of the chain ends. Size exclusion chromatography and NMR measurements revealed an excellent introduction efficiency (84–98%) of the terminal trithiocarbonate group into the polymer chain end. They were available as the monofunctional and difunctional macro-CTAs to synthesize the AB and ABA block copolymers, respectively. While the well-controlled block copolymers were solely obtained by the polymerization of 2-ethylhexyl acrylate as the second monomer in the presence of PDiPF as the macro-CTA, the block copolymerization of DiPF using poly(2-ethylhexyl acrylate) as the macro-CTA failed. The trithiocarbonate group at the chain end was completely removed by the reaction with n-butylamine and it was valid for the improvement of the coloration and other optical properties of the transparent polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2584–2594  相似文献   

15.
自从Matyjaszewski等[1,2 ] 发现原子转移自由基聚合 (ATRP)以来 ,寻求新的双多官能引发剂是该领域的重要研究方向之一[3~ 7] .2 0 0 0年 ,我们[8]曾报道了α ,α 二溴乙酸乙酯可作为丙烯酸酯ATRP的双官能引发剂 ,并基于其两端增长的活性聚合性质合成了PS b PBA b PS和PMMA b PBA b PMMA两种三嵌段共聚物 .与此同时 ,Hocker等[9] 通过比较氯化苄与α ,α 二氯甲苯引发的苯乙烯ATRP的聚合速度 ,认为α ,α 二氯甲苯是苯乙烯ATRP的双官能引发剂 .当我们参照上述结果 ,用α ,α 二…  相似文献   

16.
自由基聚合是高分子化学课程中的重要一章,自由基聚合动力学(包括聚合速率、平均相对分子质量及分布)是教学中的重要内容。本文讨论了建立自由基聚合微观动力学模型的基础:三个基本假设和四个简化条件,阐释了传统单官能度引发剂引发的聚合体系速率方程推导中这些假设和条件的运用,并扩展到双官能度引发剂体系,得到基元反应速率和总速率。提出从三个层次讨论影响自由基聚合速率的因素,深化了对自由基聚合速率教和学。  相似文献   

17.
Living radical polymerization of styrene in a miniemulsion by reversible addition–fragmentation chain transfer (RAFT) was successfully realized in the presence of beta-cyclodextrin (CD), using sodium dodecyl sulfate and hexadecane as surfactant and costabilizer, respectively. The drawback of instability (red layer formation) encountered in the living radical polymerization in emulsion or miniemulsion was overcome. The linear relationship between the monomer conversion and the molecular weight, as well as lower molecular weight distribution (MWD), shows that the polymerization process was under control. The addition of CD was found to have little influence on the polymerization rate. However, MWD of the polymer synthesized is obviously decreased. The mechanism of stability and controllability improvement in the presence of CD proposed that the complex formation between CD and RAFT agent or RAFT agent-ended oligomer increased their diffusion ability from monomer droplet to polymerization locus and improved the homogeneity of the RAFT agent level among the polymerization loci.  相似文献   

18.
The heterogeneous polymerization of ethylene initiated by radiation in tert-butyl alcohol was studied. The polymerization was carried out in a 100-ml reactor at 25–100°C and pressures of 200–300 kg/cm2 in the presence of 50 ml of tert-butyl alcohol containing 7 wt-% water. The amounts of polymerized monomer, the average molecular weight of polymer formed, and the molecular weight distribution of polymer were measured at various stages of reaction and at various temperatures. The molecular weight distribution was found to be very much dependent on the reaction time and temperature. For the polymer formed at 50–60°C in the very early stages of reaction, the molecular weight distribution is unimodal, and in the intermediate stage a shoulder appears at a molecular weight higher than the first peak which increases as the polymerization proceeds; eventually a bimodal curve is formed. The bimodal distribution curves were analyzed to determine the fractions and average molecular weights of the each peak. On the basis of these data for the molecular weight distribution and kinetic behavior, a new scheme for the heterogeneous polymerization is proposed which indicates that the polymerization proceeds via propagating radicals in two different physical states, namely, loose and rigid states.  相似文献   

19.
Photopolymerization of a mixture of cyclohexene oxide and nitroethylene was carried out with the purpose of carrying out cationic and anionic polymerizations simultaneously in the same system. The excitation of the charge transfer band by light of wavelength longer than 390 nm gives rise to the polymerization of both monomers. No polymer was obtained in the dark. Additives affect the composition of the polymer, the rates of polymerization, and the molecular weight distributions. These data show that cationic polymerization of cyclohexene oxide and anionic polymerization of nitroethylene occurs simultaneously in this system.  相似文献   

20.
The direct polymerization of acrylic acid (AA) in aqueous solution for high molecular weight by means of living radical polymerization is still difficult. Here, AA was polymerized homogeneously in water by a reversible addition-fragmentation transfer polymerization (RAFT) in the presence of a water-soluble trithiocarbonate as a RAFT agent. Various ratios [AA]:[RAFT agent] were investigated to aim at different molecular weights. The polymerization exhibited living free-radical polymerization characteristics at different ratios [AA]: [RAFT agent]: controlled molecular weight, low polydispersity and well-suited linear growth of the number-average molecular weight, M n with conversion. The chain transfer to solvent or polymer was suppressed during the polymerization process, thus high linear PAA with high molecular weight and low PDI can be obtained. Moreover, using the generated PAA as a macro RAFT agent, the chain extension polymerization of PAA with fresh AA displayed controlled behavior, demonstrated the ability of PAA to reinitiate sequential polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号