首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Monolayers of isophthalic acid derivatives at the liquid/solid interface have been studied with scanning tunneling microscopy (STM). We have investigated the dynamics related to the phenomenon of solvent co-deposition, which was previously observed by our research group when using octan-1-ol or undecan-1-ol as solvents for 5-alkoxy-isophthalic acid derivatives. This solvent co-deposition has now been visualized in real-time (two frames per second) for the first time. Dynamics of individual molecules were investigated in mixtures of semi-fluorinated molecules with video-STM. The specific contrast arising from fluorine atoms in STM images allows us to use this functionality as a probe to analyze the data obtained for the mixtures under investigation. Upon imaging the same region of a monolayer for a period of time we observed that non-fluorinated molecules progressively substitute the fluorinated molecules. These findings illustrate the metastable equilibrium that exists at the liquid/solid interface, between the physisorbed molecules and the supernatant solution.  相似文献   

2.
We propose genetic algorithms as a new tool that is able to predict all possible solid candidate structures into which a simple fluid can freeze. In contrast to the conventional approach where the equilibrium structures of the solid phases are chosen from a preselected set of candidates, genetic algorithms perform a parameter-free, unbiased, and unrestricted search in the entire search space, i.e., among all possible candidate structures. We apply the algorithm to recalculate the zero-temperature phase diagrams of neutral star polymers and of charged microgels over a large density range. The power of genetic algorithms and their advantages over conventional approaches is demonstrated by the fact that new and unexpected equilibrium structures for the solid phases are discovered. Improvements of the algorithm that lead to a more rapid convergence are proposed and the role of various parameters of the method is critically assessed.  相似文献   

3.
Atomic Force Microscopy (AFM) is used to study the phase separation process occurring in block copolymers in the solid state. Measuring simultaneously the amplitude and the phase of the oscillating cantilever in tapping‐mode operation provides the surface topography along with the cartography of microdomains with different mechanical properties. This in turn allows to characterize the organization of the various components at the surface in terms of well‐defined morphologies (e.g., spheres, cylinders, or lamellae). Here this approach is applied to a series of symmetric triblock copolymers made of a central elastomeric segment (polyalkylacrylate) surrounded by two thermoplastic sequences (polymethylmethacrylate). The occurrence of microphase separation in these materials and the resulting microscopic morphology are essential factors for determining their potential applications as a new class of thermoplastic elastomers. This paper describes how the surface morphology can be controlled by the molecular structure of the copolymers (volume ratio between the sequences, molecular weight, length of the alkyl side group) and by the experimental conditions used for the preparation of the films. The molecular structure of the chains is fully determined by the synthesis of the copolymers via living anionic polymerization while the parameters that can be modified when preparing the samples are the nature of the solvent and the thermal annealing of the films. Finally, we report on a systematic comparison between images and approach‐retract curve data. We show that this experimental comparison allows the origin of the contrast that produces the image to be straightforwardly evaluated. The method provides an unambiguous quantitative measurement of the contribution of the local mechanical response to the image. We show that most of the contrast in the height and phase images is due to variations in local mechanical properties and not in topography.  相似文献   

4.
A transmission electron microscope was used to characterize a powder form of hexagonally-ordered mesoporous silica material. The structural symmetry built into this amorphous material allowed one to obtain three characteristic images, i.e. a hexagonal honey-comb structure and wide/narrow parallel lines. These images were found to originate primarily from phase contrast, which changed sensitively with defocusing. To further understand the contrast behaviour of these images, an analytical form of the defocus contrast theory was developed and applied to the simulation of the characteristic wide/narrow parallel line images. The simulation was found to be in good qualitative agreement with experiments, where changes in focus conditions and specimen thickness were predicted to alter the contrast in the resulting parallel-line type images.  相似文献   

5.
X-ray radiographic images of paintings often show little or no contrast. In order to increase the contrast in radiographic images we measured the X-ray spectrum of a low power X-ray tube, after passing through the painting, with a high energy-resolution SDD detector. To obtain images, the detector is collimated with a 400 μm diameter pinhole and the painting was moved through the beam in the x and y-direction using a dwell time of a few seconds per pixel. The data obtained consists of a data cube of, typically, 200 × 200 pixels and a 512-channel X-ray spectrum for each pixel, spanning the energy range from 0 to 40 keV. Having the absorbance spectrum available for each pixel, we are able, a posteriori, to produce images by edge subtraction for any given element. In this way high contrast, element-specific, images can be obtained. Because of the high energy-resolution a much simpler edge subtraction algorithm can be applied. We also used principal-component imaging to obtain, in a more automated way, images with high contrast. Some of these images can easily be attributed to specific elements. It turns out that preprocessing of the spectral data is crucial for the success of the multivariate image processing.  相似文献   

6.
Mesocrystals of high‐magnesian calcites are commonly found in biogenic calcites. Under ambient conditions, it remains challenging to prepare mesocrystals of high‐magnesian calcite in aqueous solution. We report that mesocrystals of calcite with magnesium content of about 20 mol % can be obtained from the phase transformation of magnesian amorphous calcium carbonate (Mg‐ACC) in lipid solution. The limited water content on the Mg‐ACC surface would reduce the extent of the dissolution–reprecipitation process and bias the phase transformation pathway toward solid‐state reaction. We infer from the selected area electron diffraction patterns and the dark‐field transmission electron microscopic images that the formation of Mg‐calcite mesocrystals occurs through solid‐state secondary nucleation, for which the phase transformation is initiated near the mineral surface and the crystalline phase propagates gradually toward the interior part of the microspheres of Mg‐ACC.  相似文献   

7.
We report comprehensive atomic force microscopy (AFM) measurements at room temperature of the nanoscale topography and lateral friction on the surface of thin solid films of an intermediate-length normal alkane, dotriacontane (n-C32H66), adsorbed onto a SiO2 surface. Our topographic and frictional images, recorded simultaneously in the contact mode, reveal a multilayer structure in which one to two layers of molecules adsorb adjacent to the SiO2 surface oriented with their long axis parallel to the interface followed by partial layers of molecules oriented perpendicular to the surface. The thicknesses of the parallel and perpendicular layers that we measured with the AFM agree with those inferred from previous x-ray specular reflectivity measurements on similarly prepared samples. We also observe bulk dotriacontane particles and, in contrast with our previous measurements, are able to determine their location. Above a minimum size, the bulk particles are separated from islands of perpendicularly oriented molecules by regions of exposed parallel layers that most likely extend underneath the particles. We find that the lateral friction is sensitive to the molecular orientation in the underlying crystalline film and can be used effectively with topographic measurements to resolve uncertainties in the film structure. We measure the same lateral friction on top of the bulk particles as on the perpendicular layers, a value that is about 2.5 times smaller than on a parallel layer. Scans on top of parallel layers indicate a constant height but reveal domains having different sublevels of friction. We explain this by the domains having different azimuthal orientations of the molecules.  相似文献   

8.
The reproducibility of contrast in secondary electron (SE) imaging during continuous electron irradiation, which caused surface contamination, was investigated using SE high-pass energy filtering in low-voltage scanning electron microscopy (SEM). According to high-pass energy-filtered imaging, dopant contrast in an indium phosphide remained remarkably stable during continuous electron irradiation although the contrast in unfiltered SE images decreased rapidly as a contamination layer was formed. Charge neutralization and the SE energy distributions indicate that the contamination layer induces a positive charge. This results in a decrease of low-energy SE emissions and reduced dopant contrast in unfiltered SE images. The retention of contrast was also observed in high-pass energy-filtered images of a gold surface. These results suggest that this imaging method can be widely used when SE intensities decrease under continuous electron irradiation in unfiltered SE images. Thus, high-pass energy-filtered SE imaging will be of a great assistance for SEM users in the reproducibility of contrast such as a quantitative dopant mapping in semiconductors.  相似文献   

9.
Photocatalytic overall water splitting has been studied extensively from the viewpoint of solar energy conversion. Despite numerous attempts, none have yielded satisfactory results for the development of photocatalysts, which work under visible light irradiation to efficiently utilize solar energy. We report here the first example of visible-light-driven overall water splitting on a novel oxynitride photocatalyst, a solid solution of GaN and ZnO with a band gap of 2.58-2.76 eV, modified with RuO2 nanoparticles. In contrast to the conventional non-oxide photocatalysts, such as CdS, the solid solution is stable during the overall water splitting reaction. This is the first example of achieving overall water splitting by a photocatalyst with a band gap in the visible light region, which opens the possibility of new non-oxide-type photocatalysts for energy conversion.  相似文献   

10.
Mesoporous silica-coated hollow manganese oxide (HMnO@mSiO(2)) nanoparticles were developed as a novel T(1) magnetic resonance imaging (MRI) contrast agent. We hypothesized that the mesoporous structure of the nanoparticle shell enables optimal access of water molecules to the magnetic core, and consequently, an effective longitudinal (R(1)) relaxation enhancement of water protons, which value was measured to be 0.99 (mM(-1)s(-1)) at 11.7 T. Adipose-derived mesenchymal stem cells (MSCs) were efficiently labeled using electroporation, with much shorter T(1) values as compared to direct incubation without electroporation, which was also evidenced by signal enhancement on T(1)-weighted MR images in vitro. Intracranial grafting of HMnO@mSiO(2)-labeled MSCs enabled serial MR monitoring of cell transplants over 14 days. These novel nanoparticles may extend the arsenal of currently available nanoparticle MR contrast agents by providing positive contrast on T(1)-weighted images at high magnetic field strengths.  相似文献   

11.
The enzymatic activity of diaphorase (Dp) immobilized on a solid substrate was characterized using a scanning electrochemical microscope (SECM) with shear force feedback to control the substrate-probe distance. The shear force between the substrate and the probe was monitored with a tuning fork-type quartz crystal and used as the feedback control to set the microelectrode probe close to the substrate surface. The sensitivity and the contrast of the SECM image were improved in the constant distance mode (distance, 50 nm) with the shear force feedback compared to the image in the constant height mode without the feedback. By using this system, the SECM and topographic images of the immobilized diaphorase were simultaneously measured. The microelectrode tip used in this study was ground aslant like a syringe needle in order to obtain the shaper topographic images. This shape was also effective for avoiding the interference during the diffusion of the enzyme substrates.  相似文献   

12.
Current computed tomography (CT) contrast agents such as iodine-based compounds have several limitations, including short imaging times due to rapid renal clearance, renal toxicity, and vascular permeation. Here, we describe a new CT contrast agent based on gold nanoparticles (GNPs) that overcomes these limitations. Because gold has a higher atomic number and X-ray absorption coefficient than iodine, we expected that GNPs can be used as CT contrast agents. We prepared uniform GNPs ( approximately 30 nm in diameter) by general reduction of HAuCl4 by boiling with sodium citrate. The resulting GNPs were coated with polyethylene glycol (PEG) to impart antibiofouling properties, which extends their lifetime in the bloodstream. Measurement of the X-ray absorption coefficient in vitro revealed that the attenuation of PEG-coated GNPs is 5.7 times higher than that of the current iodine-based CT contrast agent, Ultravist. Furthermore, when injected intravenously into rats, the PEG-coated GNPs had a much longer blood circulation time (>4 h) than Ultravist (<10 min). Consequently, CT images of rats using PEG-coated GNPs showed a clear delineation of cardiac ventricles and great vessels. On the other hand, relatively high levels of GNPs accumulated in the spleen and liver, which contain phagocytic cells. Intravenous injection of PEG-coated GNPs into hepatoma-bearing rats resulted in a high contrast ( approximately 2-fold) between hepatoma and normal liver tissue on CT images. These results suggest that PEG-coated GNPs can be useful as a CT contrast agent for a blood pool and hepatoma imaging.  相似文献   

13.
The transfer of a liquid under dynamic conditions onto a solid surface relies on wetting/adhesion under transient external forces. We found the phenomena associated with forced wetting and dewetting could not be explained by thermodynamic approaches which are based on surface energy and work of adhesion. This is because these approaches do not take account of the dynamic nature of the forced wetting and dewetting. This study uses ink transfer in waterless offset printing as an example to present a new understanding of adhesion and anti-adhesion of a liquid to a solid surface under dynamic conditions. We focus on the adhesion strength, instead of work of adhesion, at the ink-plate interface and experimentally quantified ink adhesion forces on the image and non-image areas of the printing plate. Based on adhesion force measurements we proposed that the formation of a weak boundary layer and/or the softening the non-image area due to solvent swelling are likely to be the mechanisms that causes ink refusal on the non-image area. AFM images are presented to show changes of the non-image surface before and after contacting with ink.  相似文献   

14.
In this paper we present our recent positron annihilation study of the liquid»solid phase boundary for CO2 confined in nanometer pores of VYCOR glass. We find that CO2 remains liquid in the pores far below the bulk freezing temperature and there is pronounced hysteresis between freezing and melting compared to that seen at the gas-liquid boundary in the pores. On freezing we see evidence of open space created in the pores. This leads to complex melting behaviour possibly involving the formation of gas-liquid interfaces. We see that frezing in the pores is totally irreversible, so that any solid which forms (no matter how small) remains stable up to the higher melting temperature. In contrast melting is more reversible (possibly indicating nucleation centres which permit immediate re-freezing). Finally, the pre-frozen state in the pores is different to the post-melted state.  相似文献   

15.
We present the implementation of the cyclic cluster model (CCM) formalism at the Hartree–Fock (HF) level. In contrast to other periodic models, the CCM is a Γ‐point approach. Integration is carried out in real space within a finite interaction area determined by the size and the shape of the cluster that corresponds to a supercell of the solid, surface, or polymer. Particular care has to be taken for the proper treatment of three‐ and four‐center integrals that involve basis functions located at the boundaries of the Wigner–Seitz supercell, which defines the interaction region. The similarity between the CCM formalism and molecular approaches allows in principle the application of sophisticated post HF methods to solid‐state problems with only moderate modification of the molecular code. We show for selected model systems, that with our approach, the electronic structure and energetics obtained by the conventional supercell model is fully reproduced. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
《Supramolecular Science》1997,4(1-2):11-19
We prepared patterned self-assembled monolayers (SAMs) consisting of hexadecanethiol (16AT) and ferrocenyldodecanethiol (12FAT). The samples were characterized by scanning force microscopy (SFM), X-ray photoelectron spectroscopy (XPS), electrochemistry and contact angle measurements. Lateral force mode (LFM) of SFM shows image contrast even between surface regions of quite similar hydrophobicity. The 12FAT regions undergo irreversible chemical changes and become electrochemically inactive upon long exposure to the laboratory atmosphere. These chemical changes can be monitored by LFM, XPS, contact angle and electrochemistry. The LFM images of the exposed and contaminated samples show a reversed frictional contrast relative to the LFM images of the fresh samples and to the LFM images of the exposed but ethanol-rinsed sample. XPS and SFM data show that the 12FAT regions show more contamination than the 16AT regions. Based on these observations, the mechanism of the LFM image contrast is discussed and other driving forces, arising not only from differences in hydrophobicity but also from basic material properties such as elasticity, packing and contamination, are suggested.  相似文献   

17.
Nie HY  Taylor AR  Lau WM  MacFabe DF 《The Analyst》2011,136(11):2270-2276
For sectioned biologic tissues, atomic force microscopy (AFM) topographic images alone hardly provide adequate information leading to revealing biological structures. We demonstrate that phase imaging in amplitude-modulation AFM is a powerful tool in mapping structures present on the surface of unfixed rat brains sections. The contrast in phase images is originated from the difference in mechanical properties between biological structures. Visualization of the native state of biological structures by way of their mechanical properties provides a complementary technique to more traditional imaging techniques such as optical and electron microscopy.  相似文献   

18.
This investigation examines the transient deformation and heat generation of a solid polyurethane subjected to dynamic compression. A special method is presented to prepare the solid polyurethane from raw materials which are commonly used to make polyurethane foams. Testing methods including infrared spectrum, differential scanning calorimetry, quasi-static and dynamic compression were applied to study the basic physical properties of the solid polyurethane. High-speed optical and infrared imaging systems are used to obtain visual and thermo-graphic images during impact tests. Under quasi-static compression, the solid polyurethane presents a good performance in toughness. This is confirmed by its Poisson's ratio. Under impact compression, the adiabatic heat generation are identified statistically. Temperature distribution confirms the fact of transient heat generation in specimens. Adiabatic self-heating mechanism provides a consideration to understand the negative strain-rate effect and post-yield softening effect found in the solid polyurethane. Mechanical properties including quasi-static and dynamic responses are related with the composition of molecular and structure of polymer.  相似文献   

19.
20.
We use the first-principles static and dynamic simulations to study the adsorption of acetic (CH(3)COOH) and trifluoroacetic (CF(3)COOH) acid on the TiO(2)(110) surface. The most favorable adsorption for both molecules is a dissociative process, which results in the two oxygens of the carboxylate ion bonding to in-plane titanium atoms in the surface. The remaining proton then bonds to a bridging oxygen site, forming a hydroxyl group. We further show that, by comparing the calculated dipoles of the molecules on the surface, it is possible to understand the difference in contrast over the acetate and trifluoroacetate molecules in the atomically resolved noncontact atomic force microscopy images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号