首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
In this paper we focus on miscible blends of two engineering polymers: poly(butylene terephthalate) (PBT) and a polyarylate (PAr). The issue of transesterification in these blends will be addressed, followed by a discussion of the crystallization kinetics of PBT, poly(ethylene terephthalate) and several PBT/PAr blends. The ability to estimate polymer–polymer interaction parameters in blends from melting point depression will also be discussed. The amorphous phase behavior of the PBT/PAr blends has been explored primarily using dielectric spectroscopy. For blends in which PBT has crystallized, we observe two relaxations associated with Tg-like motion, and this behavior is interpreted in light of our recent work on order–disorder interphases in crystalline blends.  相似文献   

2.
The crystallization behavior of poly(e-caprolactone)/poly(ethylene glycol) (PCL/PEG) blend was investigated by differential scanning calorimetry (DSC) and polarized microscopy (POM). Individual phase transition peaks in the DSC curves for both PEG and PCL in all the polymer blends with different PCL contents were observed. The crystallization and melting peak temperatures of PEG were at 41 and 65°C, respectively; while the crystallization and melting temperatures of PCL located at 28 and 56°C, respectively. In-situ POM results demonstrated that spherulites crystalline morphology was formed for both PCL and PEG homopolymers. In PEG/PCL blend, however, both the phase separation morphology and spherulitic morphology can be observed. In blends with 30 or 50 wt % PCL, the PCL component formed dispersed phase and crystallized at lower temperature. However, in blends with 70% PCL, the phase inversion behavior occurred. The continuous PCL phase crystallized at 35°C, while the PEG dispersed phase crystallized at a lower temperature. Fractional crystallization behavior of PEG and PCL was controlled by temperature. The spherulites growth rate of PEG was greatly influenced by temperature, instead of the content of PCL component in the PCL/PEG blends.  相似文献   

3.
Blends of various poly(aryl ether ketones) have been found to exhibit a range of miscibility and isomorphic behavior. This range is dependent on molecular weight; however, for poly(aryl ether ketones) with number-average molecular weight of 20,000, this range is about ±25% difference in ketone content. All miscible blends exhibit isomorphism, and all immiscible blends exhibit no evidence of isomorphism. The dependence of the glass transition temperature Tg versus composition exhibits a minimum deviation from linearity whereas the melting temperature Tm versus composition exhibits a pronounced maximum deviation from linear behavior. The crystalline melting point versus composition for isomorphic blends is considerably different than for random copolymers with isomorphic units. Homopolymers and random copolymers exhibit a melting point that is a linear function of ketone content (increasing ketone content increases Tm). For blends, the melting point is essentially the same as that of the higher melting constituent until high levels of the lower melting constituent are present. The observed melting point versus composition behavior will be interpreted using classical theory to calculate the components of the liquid and crystalline phase compositions. As a miscible blend is cooled from the melt, essentially pure component of the highest melting point crystallizes out of solution, as predicted by calculated solid-liquid phase diagrams. This occurs until the crystallization is complete owing to spherulitic impingement. At high concentrations of the lower melting constituent, lower melting points will be observed because the highest melting constituent will be depleted before the crystallization is complete. In many miscible blends involving addition of an amorphous polymer to a crystalline polymer, the degree of crystallinity of the crystalline polymer has been shown to increase. On the basis of evidence presented here, it is hypothesized that dilution by a miscible, amorphous polymer allows for a higher level of crystallinity.  相似文献   

4.
聚醚醚酮/聚醚醚酮酮共混体系的熔融和等温结晶行为   总被引:3,自引:0,他引:3  
采用熔融共混方法制备了聚醚醚酮和聚醚醚酮酮的共混物,用DSC对共混物的熔融行为和等温结晶行为进行了研究.结果表明,共混物熔点随聚醚醚酮含量增加而降低,但与聚醚醚酮酮有相同的平衡熔点,二者共混没有改变其结晶的成核与生长机制.  相似文献   

5.
为了解决废弃塑料引起的“白色污染”问题,世界各国竞相研制开发可生物降解高分子材料,其中,有关聚β 羟基丁酸酯[poly(β hydroxybutyrate)(PHB)]的研究尤其活跃.然而,由于商品价格较高,材料本身抗冲击性能较差、加工窗口较窄等限制...  相似文献   

6.
为了解决废弃塑料引起的“白色污染”问题,世界各国竞相研制开发可生物降解高分子材料,其中,有关聚β羟基丁酸酯[poly(βhydroxybutyrate)(PHB)]的研究尤其活跃.然而,由于商品价格较高,材料本身抗冲击性能较差、加工窗口较窄等限制...  相似文献   

7.
The present report deals with some results on phase behavior, miscibility and phase separation for several polymer blends casting from solutions. These blends are grouped as the amorphous polymer blends, blends containing a crystalline polymer or two crystalline polymers. The blends of PMMA/PVAc were miscible and underwent phase separation at elevated temperature, exhibited LCST behavior. The benzoylated PPO has both UCST and LCST nature. For the systems composed of crystalline polymer poly(ethylene oxide) and amorphous polyurethane, of two crystalline polymers poly(-caprolactone) and poly[3,3,-bis-(chloromethyl) oxetane], appear a single Tg, indicating these blends are miscible. The interaction parameter B's were determined to be –14 J cm–3, –15 J cm–3 respectively. Phase separation of phenolphthalein poly(ether ether sulfone)/PEO blends were discussed in terms of thermal properties, such as their melting and crystallization behavior.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
The cluster distribution approach is extended to investigate the crystallization kinetics of miscible polymer blends. Mixture effects of polymer-polymer interactions are incorporated into the diffusion coefficient. The melting temperature, activation energy of diffusion, and phase transition enthalpy also depend on the blending fraction and lead to characteristic kinetic behavior of crystallization. The influence of different blending fractions is presented through the time dependence of polymer concentration, number and size of crystals, and crystallinity (in Avrami plots). Computational results indicate how overall crystallization kinetics can be expressed approximately by the Avrami equation. The nucleation rate decreases as the blending fraction of the second polymer component increases. The investigation suggests that blending influences crystal growth rate mainly through the deposition-rate driving force and growth-rate coefficient. The model is further validated by simulating the experimental data for the crystallization of a blend of poly(vinylidenefluoride)[PVDF] and poly(vinyl acetate)[PVAc] at various blending fractions.  相似文献   

9.
The crystallization behavior of the blends of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOc) under quiescent condition and shear flow were studied by differential scanning calorimetry (DSC) and rheology, respectively. The DSC curves of the iPP phase in the blends showed similar crystallization exothermic peaks to that of pure iPP itself, indicating that the addition of PEOc up to a percentage of 30 in weight almost had no influence on the crystallization behavior of iPP at quiescent condition. The rheological results of isothermal flow-induced crystallization (FIC) of iPP in the blends showed that the crystallization kinetics of iPP was enhanced with the increase of shear rate, similar to that of pure iPP, but the presence of PEOc enhanced the effect of shear on the crystallization kinetics of iPP significantly in the cases of shear rates larger than 0.2 s−1, which was due to that PEOc played an important role to promote the nucleation of iPP. The rheological results also implied that the characteristic relaxation times of blends were longer than that of pure iPP during the FIC process, indicating a different relaxation mechanism which might be related to the occurrence of interface relaxation and chain relaxation of the PEOc phase in the blends.  相似文献   

10.
自从Wundedich等报道聚乙烯(PE)在高压结晶时可以生成伸直链晶体以来,相继很多有关聚合物体系的高压结晶行为方面的研究已见报道.研究结果表明,聚合物在高压下经历相转变时可产生非常丰富的微观结构,而球晶及伸直链晶体是其中最常见的两种结晶形态.但是,所观察到的这两种聚合物晶体都是分别存在,且独立生长的.到目前为止,尚未见到关于高压下球晶可以在伸直链晶体内部存在的报道.  相似文献   

11.
流动诱导聚合物结晶研究很少在压力场下开展,其原因是压力下流动诱导聚合物结晶对实验设备要求较高。然而,实际加工中不仅存在流动场,还有压力场。为此,作者课题组利用自制的装置对压力下流动诱导聚合物结晶开展了系统研究,发现其结晶行为与常压的流动诱导结晶有较大差别。等规聚丙烯(iPP)在压力和剪切场下可形成独特取向球形晶体形态。在短时间内(30min),iPP片晶可快速增厚,形成熔点接近平衡熔点的厚片晶(近180℃),其原因是在压力和流动场协同作用下,片晶增厚活化能快速减小。同时,从研究结果也获得了添加β成核剂的iPP体系在压力和流动场下形成β晶的窗口条件。对聚乳酸(PLA)的研究也发现了相似的片晶快速增厚规律。另外,在压力和流动场下,可直接从PLA熔体中获得可增韧PLA的β晶。研究成果为实际加工中的聚合物形态结构调控提供了理论和实验依据。  相似文献   

12.
Miscibility and crystallization behavior have been studied for polytetrafluoroethylene(PTFE)/poly(tetrafluoroethylene‐co‐2 mol‐% perfluoropropylvinyl ether)(PFA copolymer) blends by the use of differential scanning calorimetry, electron microscopy, X‐ray diffractometry and dynamic mechanical spectroscopy. In the amorphous phase, the two components were miscible with each other over all blending ratios, and it was found that the PFA copolymer was compatible with the PTFE matrix, when the PFA content is ≤ 50 wt.‐%, while PTFE was mixed in the PFA matrix when the PFA content is >50 wt.‐%. All the blends were crystalline as well as PTFE and PFA. The crystallization behavior was closely connected to the polymer composition of the amorphous state described above. It was conjectured that the crystallization is controlled by the PTFE matrix when the PFA content is ≤ 50 wt.‐%, while by the PFA matrix when the PFA content is >50 wt.‐%.  相似文献   

13.

The miscibility, crystallization and melting behaviour of poly(trimethylene terephthalate)/thermotropic liquid crystalline polymer (LCP) blends were studied using differential scanning calorimetry. The blends were found to form primarily an immiscible system. The addition of LCP accelerated the overall rate of crystallization and caused a depression in equilibrium melting temperature, especially at low LCP content. Lauritzen–Hoffman analysis showed that the addition of LCP caused a reduction in the fold surface energy and increased the regime II to III transition temperature.

  相似文献   

14.
A new multi‐variable‐measurement approach for characterizing and correlating the nanoscale and microscale morphology of crystal‐amorphous polymer blends with melt‐phase behavior is described. A vertical small‐angle light scattering (SALS) instrument optimized for examining the scattering and light transmitted from structures ranging from 0.5 to 50 μm, thereby spanning the size range characteristic of the initial‐to‐late stages of thermal‐phase transitions (e.g., melt‐phase separation and crystallization) in crystal‐amorphous polymer blends, was constructed. The SALS instrument was interfaced with differential scanning calorimetry (DSC), and simultaneous SALS/DSC/transmission measurements were performed. We show that the measurement of transmitted light and SALS under HV (cross‐polarized) optical alignments during melting can be used to reliably measure the thermodynamic (e.g., crystal melting and melt‐phase separation temperatures) and structural variables (e.g., crystalline fraction within the superstructures and volume fraction of superstructures) necessary for describing the multiphase behavior of crystal‐amorphous blends in one combined measurement. We also evaluate the orientation correlations of crystalline volume elements within the superstructures. Our results indicate that simultaneous measurement of transmitted light can provide a reliable estimate of the total scattering from density and orientation fluctuations and the melt‐phase separation temperature of polymer blends. For solution‐cast poly(?‐caprolactone)/poly(D,L‐lactic acid) blends, our multivariable measurements during melting provide the parameters necessary to generate a crystal–liquid and liquid–liquid phase diagram and characterize the solid‐state morphology. This opens up the challenge to explore use of our vertical SALS instrument as a rapid and convenient method for developing structure–property relationships for crystal‐amorphous polymer blends. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2714–2727, 2002  相似文献   

15.
New binary blends composed of poly(ethylene succinate) and poly(propylene succinate) or poly(ethylene succinate) and poly(butylene succinate) were prepared. Both PESu/PPSu and PESu/PBSu systems belong to semicrystalline/semicrystalline pairs. The miscibility and crystallization behavior was investigated using differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD), and polarizing light microscopy (PLM). Blends of PESu and PPSu exhibited a single composition dependent glass transition temperature over the entire range of composition, indicating that the system is miscible. The melting point depression of the high melting temperature component, PESu, was analyzed according to the Nishi‐Wang equation. A negative polymer–polymer interaction parameter was obtained, indicating that the blends are thermodynamically miscible in the melt. The two components crystallized sequentially when the blends were cooled rapidly to a low temperature. DSC traces of PESu/PBSu blends after quenching showed two distinct composition dependent glass transition temperatures between those of the neat polymers, showing that the polymers are partially miscible. The amorphous PESu/PBSu blends in the intermediate compositions showed three cold‐crystallization peaks, indicating the influence of mixing. The crystallization rates of PBSu were reduced and those of PESu were increased. WAXD showed reduced crystallinity and peak broadening in the patterns of the blends of intermediate compositions, while no spherulites could be detected by PLM. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 584–597, 2006  相似文献   

16.
The flow-induced crystallization behavior of nanocomposites, containing isotactic poly(1-butene) (PB) and functionalized multi-walled carbon nanotubes (MWNT), was investigated. Three different MWNT concentrations (0.1, 1, 5 wt%) were used to prepare the nanocomposites. Effects of MWNT and shear flow on the crystallization parameters were evaluated separately. Rheological measurements based on oscillatory shear revealed induction time and crystallization half-time at the quiescent state, where both parameters exhibited the nucleating effect of MWNT on PB. Rheological measurements based on steady-state shear flow and short-time shear flow revealed the evolution of molecular orientation, which was studied in both PB and its nanocomposites. A small increase in crystallization kinetic was recorded in PB under shear having moderate values of the Weissenberg (We) number. On the other hand, a dramatic synergistic effect of MWNT and shear was detected under the same shear conditions for nanocomposites. The optical microscopic images exhibited a clear transition from isotropic to row-like morphology in the case of nanocomposites under shear.  相似文献   

17.
《Supramolecular Science》1997,4(1-2):27-34
Polymer blends are often used in polymer light emitting diodes as a tool to increase the efficiency of the devices. In this report, we show the necessity to take the phase separation properties of such blends into account, as the miscibility of the involved polymers drastically affects the resulting film structure. By using phase separated polymer blends involving conjugated poly(thiophenes) and different non-conjugated polymers as matrices, different types of applications, such as light emitting diodes with improved voltage control of emitted colour, sub-micron size LEDs and anisotropic conductors are demonstrated.  相似文献   

18.
采用分步法用电子加速器辐射合成了聚丙烯酰胺(PAAm)/聚异丙基丙烯酰胺(PNIPAAm)互穿网络水凝胶,并考察了温度、pH值、离子强度对其溶胀性能的影响.研究表明:互穿水凝胶具有温度敏感性,且其体积相变与互穿网络中PAAm和PNIPAAm含量有关,随着网络中PAAm含量的增加水凝胶的体积相变趋于平缓,可以通过改变PAAm和PNIPAAm的组成比来控制水凝胶的体积相变行为.此外,互穿水凝胶还具有pH敏感性和一定的抗盐性.  相似文献   

19.
The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty-rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.  相似文献   

20.
The non-isothermal crystallization behavior of poly(trimethylene terephthalate) (PTT) and its blends with a liquid crystalline polymer, namely Vectra A950 (VA), was studied by differential scanning calorimetry. The values of the half-time of crystallization, t 0.5 and the parameter F(T) in the combined Avrami and Ozawa equation indicated that VA can enhance the PTT crystallization rate by acting as a nucleating agent. The crystallization activation energy of the PTT phase increased with increasing VA content. The blends were immiscible, as can be inferred from their morphology. Thermogravimetric analysis of the blends revealed improved thermal stability by the incorporation of VA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号