首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamic simulations are carried out in order to investigate the stability of the secondary and tertiary structure of the intermediate filaments monomer unit of wool. Based on the assumed secondary structure three segments of the primary structure are selected: 1A, L1,2 and a part of 2B. With the ideal α-helix as start conformation, the simulations are carried out with the MD-algorithm of DISCOVER 2.9.0 (BIOSYM, 1993) and the CFF91 force field for 500 ps at different temperatures in vacuum. In either simulation a destabilization of the helical structure with an increase of the simulation temperature is observed. By monitoring the length distribution of the axially oriented (O···H)-hydrogen bonds, which stabilize the helical structure, transition temperatures for the α-helical denaturation are determined. The supposedly α-helical segments 1A and 2B show significantly higher transition temperatures than segment L1,2. This lower temperature confirms the expectation from the amino acid sequence that the linker segment shows more conformational flexibility and is nonhelical at room temperature.  相似文献   

2.
Simulations of the stability of the secondary and tertiary structure of the α-keratin intermediate filament (IF) monomeric unit of wool are reported. Based on the assumed secondary structure three segments of the primary structure were selected: 1A, L12, and a part of 2B. Starting with an ideal α-helical conformation for each IF-segment, molecular dynamics simulations were carried out on the atomistic level at various temperatures in vaccum using the CFF91 force field. In either simulation the expected destabilization of the helical structure with increasing simulation temperature was observed. By use of different procedures of analysis, transition temperatures for the α-helical denaturation were determined that are significantly higher for the supposedly α-helical segments 1A and 2B than for the linker segment L12. The different stabilities of segments 1A and L12 were further verified through simulations in water environment that show the linker segment to be non-helical at room temperature. The lower transition temperature of segment L12 confirms the expectation that its amino acid sequence leads to increased conformational flexibility. The mobility of the water molecules surrounding the IF-segment is found to be significantly decreased by protein/water interactions.  相似文献   

3.
Molecular dynamic (MD) simulations based on two different force fields, CVFF and CFF91, were carried out in order to check their feasibility for the structural investigation of the wool intermediate filament (IF) monomeric unit. Selecting an ideal α-helix as start conformation, all MD-simulations with CVFF in vaccum show the α-helix to be unstable. Independently of the amino acid sequence of the α-helix, a new helical structure with a larger diameter arises during the MD-simulation, due to a shift of the intrahelical hydrogen bonds. However in simulations with surrounding water the α-helix remains stable throughout the simulations with the CVFF force field. In contrast to this, MD-simulations in vaccume based on the CFF91 force field are able to determine different stabilities for the α-helical start conformation of various IF-segments, that agree well with secondary structure predictions. The simulation results obtained with CFF91 in vacuum can like wise be verified using an explicit water environment. We found that higher partial charges attributed to the atoms of the amide groups that form the intrahelical hydrogen bonds are the reason for the superiority of the CFF91 force field.  相似文献   

4.
Folding of a polyalanine variant (A-AQ12 with the sequence Ac-[AAQAA]2-GY-NH2) in pure water is studied with molecular dynamics (MD) simulation using AMBER fixed charge model and AHBC charge variation model, respectively. The results show that AMBER ostensibly misfolds A-AQ12 into a well-defined α-helix, while A-AQ12 remains a random coil in AHBC agreeing better with the experimental predication of low fractional helical content. The difference is most likely due to the different backbone solvation with and without the incorporation of electrostatic polarization in the simulations, which highlights the importance of electrostatic polarization in H-bonds dynamics of α-helix in water.  相似文献   

5.
Strategically placed covalent linkages have been shown to stabilize helical conformations in short peptide sequences. Here we report the synthesis of a stabilized α-helix that utilizes an internal disulfide linkage. Structural analysis indicates that the dynamic nature of the disulfide bridge allows for the reversible formation of an α-helix through oxidation and reduction reactions.  相似文献   

6.
A reduced point charge model was developed in a previous work from the study of extrema in smoothed charge density distribution functions generated from the Amber99 molecular electrostatic potential. In the present work, such a point charge distribution is coupled with the Amber99 force field and implemented in the program TINKER to allow molecular dynamics (MD) simulations of proteins. First applications to two polypeptides that involve α-helix and β-sheet motifs are analyzed and compared to all-atom MD simulations. Two types of coarse-grained (CG)-based trajectories are generated using, on one hand, harmonic bond stretching terms and, on the other hand, distance restraints. Results show that the use of the unrestrained CG conditions are sufficient to preserve most of the secondary structure characteristics but restraints lead to a better agreement between CG and all-atom simulation results such as rmsd, dipole moment, and time-dependent mean square deviation functions.  相似文献   

7.
Early oligomerization of human islet amyloid polypeptide (hIAPP), which is accountable for β-cell death, has been implicated in the progression of type 2 diabetes mellitus. Some researches have shown the connection between hIAPP and Alzheimer's disease as well. However, the mechanism of peptide accumulation and associated cytotoxicity remains unclear. Due to the unique properties and significant role of histidine in protein sequences, here for the first time, the tautomeric effect of histidine at the early stages of amylin misfolding was investigated via molecular dynamics simulations. Considering Tau and Pi tautomeric forms of histidine (Tau and Pi tautomers are denoted as ϵ and δ, respectively), simulations were performed on two possible isomers of amylin. Our analysis revealed a higher probability of transient α-helix generation in the δ isomer in monomeric form. In dimeric forms, the δδ and δϵ conformations showed an elevated amount of α-helix and lower coil in comparison to the ϵϵ dimer. Due to the significant role of α-helix in membrane disruption and transition to β-sheet structure, these results may imply a noticeable contribution of the δ isomer and the δδ and δϵ dimers rather than ϵ and ϵϵ conformations in the early stages of diabetes initiation. Our results may aid in elucidating the hIAPP self-association process in the etiology of amyloidosis.  相似文献   

8.
The correct balance between attractive, repulsive and peptide hydrogen bonding interactions must be attained for proteins to fold correctly. To investigate these important contributors, we sought a comparison of the folding between two 25-residues peptides, the influenza A M2 protein transmembrane domain (M2TM) and the 25-Ala (Ala25). M2TM forms a stable α-helix as is shown by circular dichroism (CD) experiments. Molecular dynamics (MD) simulations with adaptive tempering show that M2TM monomer is more dynamic in nature and quickly interconverts between an ensemble of various α-helical structures, and less frequently turns and coils, compared to one α-helix for Ala25. DFT calculations suggest that folding from the extended structure to the α-helical structure is favored for M2TM compared with Ala25. This is due to CH⋯O attractive interactions which favor folding to the M2TM α-helix, and cannot be described accurately with a force field. Using natural bond orbital (NBO) analysis and quantum theory atoms in molecules (QTAIM) calculations, 26 CH⋯O interactions and 22 NH⋯O hydrogen bonds are calculated for M2TM. The calculations show that CH⋯O hydrogen bonds, although individually weaker, have a cumulative effect that cannot be ignored and may contribute as much as half of the total hydrogen bonding energy, when compared to NH⋯O, to the stabilization of the α-helix in M2TM. Further, a strengthening of NH⋯O hydrogen bonding interactions is calculated for M2TM compared to Ala25. Additionally, these weak CH⋯O interactions can dissociate and associate easily leading to the ensemble of folded structures for M2TM observed in folding MD simulations.  相似文献   

9.
Given that α-synuclein has been implicated in the pathogenesis of several neurodegenerative disorders, deciphering the structure of this protein is of particular importance. While monomeric α-synuclein is disordered in solution, it can form aggregates rich in cross-β structure, relatively long helical segments when bound to micelles or lipid vesicles, and a relatively ordered helical tetramer within the native cell environment. To understand the physical basis underlying this structural plasticity, we generated an ensemble for monomeric α-synuclein using a Bayesian formalism that combines data from NMR chemical shifts, RDCs, and SAXS with molecular simulations. An analysis of the resulting ensemble suggests that a non-negligible fraction of the ensemble (0.08, 95% confidence interval 0.03-0.12) places the minimal toxic aggregation-prone segment in α-synuclein, NAC(8-18), in a solvent exposed and extended conformation that can form cross-β structure. Our data also suggest that a sizable fraction of structures in the ensemble (0.14, 95% confidence interval 0.04-0.23) contains long-range contacts between the N- and C-termini. Moreover, a significant fraction of structures that contain these long-range contacts also place the NAC(8-18) segment in a solvent exposed orientation, a finding in contrast to the theory that such long-range contacts help to prevent aggregation. Lastly, our data suggest that α-synuclein samples structures with amphipathic helices that can self-associate via hydrophobic contacts to form tetrameric structures. Overall, these observations represent a comprehensive view of the unfolded ensemble of monomeric α-synuclein and explain how different conformations can arise from the monomeric protein.  相似文献   

10.
Thereza Soares 《Tetrahedron》2004,60(35):7775-7780
β-Polypeptides are known to adopt helical secondary structure in organic solvents, even for rather short chain lengths. It is investigated whether a short α-polypeptide with amino-acid side chains that enable β-peptides to adopt helical structures, can maintain or adopt stable helical structure in methanol or in water. The molecular dynamics simulations do not predict a particular fold, which indicates an essential role for the additional methylene moiety in the backbone of β-peptides regarding helix stability.  相似文献   

11.
The formation mechanism and stability of konjac glucomannan (KGM) helical structure were investigated by molecular dynamic simulation and experimental method. The results indicate that the molecular conformation of KGM is a non-typical helical structure. In detail, helical structure of KGM is mainly sustained by acetyl group, whose size and stability are affected by the molecular polymerization degree of KGM. In vacuum among the non-bonding interactions, electrostatic force is the greatest factor affecting its helical structure, but in water solution, hydrogen bond affects the helical arrangement greatly. To our interest, temperature exhibits a reversible destroying effect to some extent; the helical structure will disappear completely and present a ruleless clew-like arrangement till 341 K. This work suggests that the method of combining molecular dynamic simulation and experiment tools can be effective in the study of KGM helical structure.  相似文献   

12.
We propose a stochastic optimization technique based on a generalized simulated annealing (GSA) method for mapping minima points of molecular conformational energy surfaces. The energy maps are obtained by coupling a classical molecular force field (THOR package) with a GSA procedure. Unlike the usual molecular dynamics (MD) method, the method proposed in this study is force independent; that is, we obtain the optimized conformation without calculating the force, and only potential energy is involved. Therefore, we do not need to know the conformational energy gradient to arrive at equilibrium conformations. Its utility in molecular mechanics is illustrated by applying it to examples of simple molecules (H2O and H2O3) and to polypeptides. The results obtained for H2O and H2O3 using Tsallis thermostatistics suggest that the GSA approach is faster than the other two conventional methods (Boltzmann and Cauchy machines). The results for polypeptides show that pentalanine does not form a stable α-helix structure, probably because the number of hydrogen bonds is insufficient to maintain the helical array. On the contrary, the icoalanine molecule forms an α-helix structure. We obtain this structure simulating all Φ, Ψ pairs using only a few steps, as compared with conventional methods. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 647–657, 1998  相似文献   

13.
A new thermodynamic integration approach to conformational free energy simulations is presented. The method is applicable both to one-dimensional cases (reaction coordinates) and multidimensional situations (free energy surfaces). Analysis of the properties of the thermodynamic integration algorithm is used to formulate methods of calculating multidimensional free energy gradients. The method is applied to calculate the free energy profile for rotation around the central C—C bond of n-butane in the gas and liquid phase and to generate maps of the 18-dimensional free energy gradient with respect to all nine ϕ and nine ψ dihedrals of the decaalanine and deca-α-methylalanine peptides in vacuum. For n-butane essentially no change in the gauche–trans equilibrium between the gas and liquid is predicted within the CHARMM explicit hydrogen model, with the thermodynamic integration, thermodynamic perturbation, and direct simulation methods yielding free energy profiles that are identical within errors. For the decapeptides the right-handed helical region of conformational space is investigated. For decaalanine a minimum on the free energy surface is found in the vicinity of (ϕ, ψ) = (-64.5°, -42.5°) in the α-helix region; no minimum exists for 310-helix-type conformers. For deca-α-methylalanine free energy minima corresponding to both the α-helix at ( - 55.5°, - 51.5°) and the 310-helix at ( - 54°, - 29°) are found; the α-helix state is favored by about 4 kcal/mol and the barrier for the concerted 310-helix → α-helix transition is about 3 kcal/mol. The α-methylation also considerably increases the rigidity of the α-helix with respect to deformations. The computational efficiency, ease of generalization to calculations of multidimensional gradients, and analytical capability due to component analysis of free energy differences make the method a novel, powerful tool to improve the basic understanding of conformational equilibria of flexible molecules in condensed phases. A related scheme for energy minimization in the presence of holonomic constraints is also presented, allowing generation of adiabatic energy surfaces in constrained systems. © 1996 by John Wiley & Sons, Inc.  相似文献   

14.
A fast stable finite difference Poisson-Boltzmann (FDPB) model for implicit solvation in molecular dynamics simulations was developed using the smooth permittivity FDPB method implemented in the OpenEye ZAP libraries. This was interfaced with two widely used molecular dynamics packages, AMBER and CHARMM. Using the CHARMM-ZAP software combination, the implicit solvent model was tested on eight proteins differing in size, structure, and cofactors: calmodulin, horseradish peroxidase (with and without substrate analogue bound), lipid carrier protein, flavodoxin, ubiquitin, cytochrome c, and a de novo designed 3-helix bundle. The stability and accuracy of the implicit solvent simulations was assessed by examining root-mean-squared deviations from crystal structure. This measure was compared with that of a standard explicit water solvent model. In addition we compared experimental and calculated NMR order parameters to obtain a residue level assessment of the accuracy of MD-ZAP for simulating dynamic quantities. Overall, the agreement of the implicit solvent model with experiment was as good as that of explicit water simulations. The implicit solvent method was up to eight times faster than the explicit water simulations, and approximately four times slower than a vacuum simulation (i.e., with no solvent treatment).  相似文献   

15.
The helical region of the potential energy surface of blocked α-aminoisobutyric acid (Aib) dipeptide has been studied by using ab initio and semiempirical quantum mechanical methods, as well as force-field-derived methods. Depending on the method, an α-helix or a 310-helix is found to be the energy minimum. The conformations obtained from computations performed at the ab initio quantum mechanical level, as well as by using the AMBER force field, are in excellent agreement with X-ray data. Semiempirical results display some important differences with regard to experimental data. On the other hand, the CVFF force field predicts no energy minimum in the helical region of the Aib potential energy surface. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Protein engineering method to study the mutation effects on muscle acylphosphatase (AcP) has been actively applied to describe kinetics and thermodynamics associated with AcP aggregation as well as folding processes. Despite the extensive mutation experiments, the molecular origin and the structural motifs for aggregation and folding kinetics as well as thermodynamics of AcP have not been rationalized at the atomic resolution. To this end, we have investigated the mutation effects on the structures and thermodynamics for the aggregation and folding of AcP by using the combination of fully atomistic, explicit-water molecular dynamics simulations, and three-dimensional reference interaction site model theory. The results indicate that the A30G mutant with the fastest experimental aggregation rate displays considerably decreased α1-helical contents as well as disrupted hydrophobic core compared to the wild-type AcP. Increased solvation free energy as well as hydrophobicity upon A30G mutation is achieved due to the dehydration of hydrophilic side chains in the disrupted α1-helix region of A30G. In contrast, the Y91Q mutant with the slowest aggregation rate shows a non-native H-bonding network spanning the mutation site to hydrophobic core and α1-helix region, which rigidifies the native state protein conformation with the enhanced α1-helicity. Furthermore, Y91Q exhibits decreased solvation free energy and hydrophobicity compared to wild type due to more exposed and solvated hydrophilic side chains in the α1-region. On the other hand, the experimentally observed slower folding rates in both mutants are accompanied by decreased helicity in α2-helix upon mutation. We here provide the atomic-level structures and thermodynamic quantities of AcP mutants and rationalize the structural origin for the changes that occur upon introduction of those mutations along the AcP aggregation and folding processes.  相似文献   

17.
Concentrated solutions of amphiphilic macromolecules with local helical structure were studied by means of molecular dynamic simulations. It is shown that in poor solvent the macromolecules are assembled into wire-like aggregates having complex core-shell structure. The core consists of a hydrophobic backbone of the chains which intertwine around each other. It is protected by the shell of hydrophilic side groups. In racemic mixture of right-hand and left-hand helix macromolecules the wire-like complex is a chain of braid bundles of macromolecules with the same chirality stacking at their ends. The average number of macromolecules in the wire cross-section is close to that of separate bundles observed in dilute solutions of such macromolecules. The effects described here could serve as a simple model of self-organization in solutions of macromolecules with local helical structure.  相似文献   

18.
A new α-helix mimetic was designed by using a benzamide as a rigid scaffold. It presents three functional groups corresponding to side chains of amino acids found at the i, i + 4, and i + 7 positions of an ideal α-helix, which are displayed on the same helical face. Its efficient synthesis was achieved by employing simple alkylation and amidation reactions which can be easily adapted for solid-phase synthesis. As a result, two tris-benzamides were produced to mimic two helical regions found in a peptide hormone, glucagon.  相似文献   

19.
Synthesis, crystal conformations of α/γ(4)-hybrid peptide helices containing proteinogenic amino acid side-chains, and the analogy with the α-helix are reported. Results suggest that α/γ(4)-hybrid peptides adopted helical conformations with 12-membered H-bond pseudocycles in single crystals.  相似文献   

20.
Liu  Cui  Yang  ZhongZhi 《中国科学:化学(英文版)》2009,52(11):1917-1924
Science China Chemistry - We have performed molecular dynamics simulations on the reversible folding/unfolding of small α-helix (short Ala based peptide Ala5) in explicit water solvent in...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号