首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Progress in Surface Science》2007,82(4-6):355-377
Ultrafast heterogeneous electron transfer (HET) from the excited singlet state of the large organic chromophore perylene into the inorganic semiconductor rutile TiO2 was investigated with femtosecond time-resolved two-photon photoemission (TR-2PPE). The strength of the electronic interaction between the chromophore and the semiconductor was varied by inserting different anchor/bridge groups that functioned either as electronic wire or electronic tunnelling barrier. Both anchor groups, i.e. carboxylic and phosphonic acid, formed strong chemical bonds at the TiO2 surface. The perylene chromophore with the different anchor/bridge groups was adsorbed from solution in a dedicated ultra-high-vacuum (UHV) chamber. The adsorption geometry of the chromophore perylene was determined from angle and polarization dependent two-photon photoemission (2PPE) signals and was found to be very different for the two different anchor/bridge groups. The measured adsorption geometries are compatible with recent DFT (density functional theory) calculations by P. Persson and co-workers [M. Nilsing, S. Lunell, P. Persson, L. Ojamäe, Phosphonic acid adsorption at the TiO2 anatase (1 0 1) surface investigated by periodic hybrid HF-DFT computations, Surf. Sci. 582 (2005) 49–60]. Two different processes contributed to the TR-2PPE transients, firstly electron transfer from the chromophore to the electronic acceptor states on the surface and secondly escape of the electrons from the surface into the bulk of the semiconductor. The latter escape process was measured separately by making the interfacial electron injection process instantaneous when the chromophore catechol was employed in place of the perylene compounds. The thus measured electron escape behavior was governed by the same time constants that have recently been predicted by Prezhdo and coworkers from time dependent DFT calculations [W.R. Duncan, W.M. Stier, O.V. Prezhdo, Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the Alizarin-TiO2 interface, J. Am. Chem. Soc. 127 (2005) 7941–7951]. The HET times derived from the 2PPE transients showed very good agreement with HET times measured via transient absorption (TA) on anatase TiO2 layers. The measured energy distribution of the 2PPE signals for the injected electrons suggests that a high density of electronic acceptor states is operative in both systems and is spread over an at least 1 eV wide energy range. The acceptor states are tentatively identified with surface states created through the formation of chemical bonds between the anchor groups of the organic molecules and surface atoms of the semiconductor.  相似文献   

2.
Vibrational Raman scattering from a picosecond-lived excited state of methyl orange in 9 N H2SO4 is reported. The vibrational frequencies of normal modes in ground and electronic excited states are separated by ≈ 10 cm?1 but rather large differences exist in their intensities. In particular, the intensity of a mode at ≈ 1180 cm?1, due to the NN stretch, is sensitive to the frequency of the nanosecond pulsed tunable laser. A bandwidth comparison between ground- and excited-state spectra reveals that the widths of bands of the latter, like that of the former are due to dephasing and other effects associated with interaction of molecules in the liquid phase.  相似文献   

3.
4.
5.
Coumarins C-153, C-480, and C-1 formed 1:2 (guest:host) complexes with a water-soluble cavitand having eight carboxylic acid groups (OA) in aqueous borate buffer solution. The complexes were photoexcited in the presence of electron acceptors (methyl viologen, MV(2+), or TiO(2)) to probe the possibility of electron transfer between a donor and an acceptor physically separated by a molecular wall. In solution at basic pH, the dication MV(2+) was associated to the exterior of the complex C-153@OA(2), as suggested by diffusion constants (~1.2 × 10(-6) cm(2)/s) determined by DOSY NMR. The fluorescence of C-153@OA(2) was quenched in the presence of increasing amounts of MV(2+) and Stern-Volmer plots of I(o)/I and τ(o)/τ vs [MV(2+)] indicated that the quenching was static. As per FT-IR-ATR spectra, the capsule C-153@OA(2) was bound to TiO(2) nanoparticle films. Selective excitation (λ(exc) = 420) of the above bound complex resulted in fluorescence quenching. When adsorbed on insulating ZrO(2) nanoparticle films, excitation of the complex resulted in a broad fluorescence spectrum centered at 500 nm and consistent with C-153 being within the lipophilic capsule interior. Consistent with the above results, colloidal TiO(2) quenched the emission while colloidal ZrO(2) did not.  相似文献   

6.
The covalently -(CH2)10- linked eosin-butylviologen compound has been synthesized. The photoinduced electron transfer of eosin ester and butylviologen as well as the influence of addition of cyclodextrin or amylose into the solution of linked compound on the system have been studied by the absorption spectra, fluorescence spectra and fluorescence lifetime. The results indicated that the intramolecular electron transfer is much more efficient than the intermolecular one. Due to the formation of inclusion complex, the process of intramolecular electron transfer was changed after adding cydodextrin or amylose.  相似文献   

7.
Pulsed laser excitation (354.7 nm, 10 ns pulse) of a pyridyltritolylporphyrin chromophore covalently linked to a dibenzylviologen, Bz2V2+, electron acceptor (porphyrin—viologen, PV2+) in CH3CN leads to intramolecular electron transfer quenching of the porphyrin singlet excited state within the laser pulsewidth to reduce the linked Bz2V2+ to Bz2V. Transient Bz2V can be detected directly by resonance Raman spectroscopy. The same transient features are obtained from pulsed laser excitation of a mixture of porphyrin (P) and dibenzylviologen in CH3CN where Bz2V2+ quenches the porphyrin fluorescence, establishing bimolecular excited state electron transfer quenching to yield Bz2V. Confirmation of our assignment of the transient Bz2V comes from comparison of the spectra with the resonance Raman spectrum of an authentic sample of Bz2V, and of electrochemically reduced PV2+ which has been spectroscopically confirmed to form PV. Fluorescence lifetime determinations for PV2+ and P yield a rate constant for intramolecular electron transfer, ket = 8 × 107 s−1, consistent with the ability to observe electron transfer within the laser pulsewidth  相似文献   

8.
Brennan JL  Howlett M  Forster RJ 《Faraday discussions》2002,(121):391-403;discussion 441-62
Transient emission spectroscopy has been used to probe the rate of photoinduced electron transfer between metal centres within a novel trimeric complex [[Os(bpy)2(bpe)2][Os(bpy)2Cl]2]4+, where bpy is 2,2'-bipyridyl and bpe is trans-1,2-bis-(4-pyridyl)ethylene. Transient emission experiments on the trimer, and on [Os(bpy)2 (bpe)2]2+ in which the [Os(bpy)2 Cl]+ quenching moieties are absent, reveal that the rate of photoinduced electron transfer (PET) across the bpe bridge is 1.3 +/- 0.1 x 10(8) s(-1). Investigations into the driving forces for oxidation and reduction of the electronically excited state within the trimer indicate that quenching of the [Os(bpy)2 (bpe)2]2+ centre within the trimer involves electron transfer from the [bpe Os(bpy)2 Cl]+ centres to the electronically excited state with a driving force of -0.3 eV. Monolayers of the complex, [Os(bpy)2 bpe pyridine]2+, have been formed by spontaneous adsorption onto platinum microelectrodes and used to probe the dynamics of electron transfer across the trans-1,2-bis-(4-pyridyl)ethylene bridge in the ground state. These monolayers are stable and exhibit well defined voltammetric responses for the Os2+/3+ redox reaction. Cyclic voltammograms recorded at high scan rates can be accurately modelled according to a non-adiabatic electron transfer model based on the Marcus theory using a standard heterogeneous electron transfer rate constant, k(o), of 3.1 +/- 0.2 x 10(4) s(-1) and a reorganization energy of 0.4 +/- 0.1 eV. This rate constant is a factor of approximately two orders of magnitude smaller than that found for photoinduced electron transfer across the same bpe bridge for identical driving forces. This significant difference is interpreted in terms of both the nature of the orbitals involved in electrochemically and optically driven electron transfer, as well as the strength of electronic coupling between two molecular components as opposed to a molecular component and a metal electrode.  相似文献   

9.
The photophysical properties of the J-aggregate of 3,3'-di(3-sulfopropyl)-4,5,4',5'-dibenzo-9-phenyl-thiacarbocyanine triethyl-ammonium salt in the absence and presence of TiO(2) colloids have been studied using UV-visible absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy, and ESR spectroscopy. The fluorescence emission of the J-aggregate decreases with increasing concentration of TiO(2) colloids. The average fluorescence lifetime of the J-aggregate in the presence of TiO(2) colloids is shorter than that in the absence of TiO(2) colloids. A strong photoinduced ESR signal has been observed during illumination by light with lambda=633 nm in the presence of TiO(2) and the ESR signal can be attributed to the J-aggregate radical cation. From the above results, it is concluded that photoinduced electron transfer from the excited singlet state of the J-aggregate to the conduction band of TiO(2) takes place and the electron transfer rate is about 1.5 x 10(8) s(-1).  相似文献   

10.
We present electronic structure methods to unveil the non-radiative pathways of photoinduced charge transfer (CT) reactions that play a main role in photophysics and light harvesting technologies. A prototypical π-stacked molecular complex consisting of an electron donor (1-chloronaphthalene, 1ClN) and an electron acceptor (tetracyanoethylene, TCNE) was investigated in dichloromethane solution for this purpose. The characterization of TCNE:π:1ClN in both its equilibrium ground and photoinduced low-lying CT electronic states was performed by using a reliable and accurate theoretical–computational methodology exploiting ab initio molecular dynamics simulations. The structural and vibrational time evolution of key vibrational modes is found to be in excellent agreement with femtosecond stimulated Raman spectroscopy experiments [R. A. Mathies et al., J. Phys. Chem. A, 2018, 122, 14, 3594], unveiling a correlation between vibrational fingerprints and electronic properties. The evaluation of nonadiabatic coupling matrix elements along generalized normal modes has made possible the interpretation on the molecular scale of the activation of nonradiative relaxation pathways towards the ground electronic state. In particular, two low frequency vibrational modes such as the out of plane bending and dimer breathing and the TCNE central C Created by potrace 1.16, written by Peter Selinger 2001-2019 C stretching play a prominent role in relaxation phenomena from the electronic CT state to the ground state one.

We present electronic structure methods to unveil the non-radiative pathways of photoinduced charge transfer (CT) reactions that play a main role in photophysics and light harvesting technologies.  相似文献   

11.
Dual intermolecular electron transfer (ELT) pathways from 4,4'-dimethoxybenzophenone (1) ketyl radical (1H*) in the excited state [1H*(D1)] to the ground-state 4,4'-dimethoxybenzophenone [1(S0)] were found in 2-methyltetrahydrofuran (MTHF) by observing bis(4-methoxyphenyl)methanol cation (1H+) and 4,4'-dimethoxybenzophenone radical anion (1*-) during nanosecond-picosecond two-color two-laser flash photolysis. ELT pathway I involved the two-photon ionization of 1H* following the injection of electron to the solvent. The solvated electron was quickly trapped by 1(S0) to produce 1*-. ELT pathway II was a self-quenching-like ELT from 1H*(D1) to 1(S0) to give 1H+ and 1*-. From the fluorescence quenching of 1H*(D1), the ELT rate constant was determined to be 1.0 x 10(10) M(-1) s(-1), which is close to the diffusion-controlled rate constant of MTHF. The self-quenching-like ELT mechanism was discussed on the basis of Marcus' ELT theory.  相似文献   

12.
Mechanisms of intermolecular charge transfer and electron transfer processes in the electronically excited states of solute molecules have been discussed in relation to the exciplex formation and fluorescence quenching reactions in solution. A new model for the electron transfer process has been proposed and studied by the quantum mechanical method. Some naive and intuitive concepts of the electron transfer process have been given a more rigorous theoretical basis. An experiment which can test this model has been suggested. Furthermore, the possible connections among the very weak CT complex formation, exciplex formation and the electron transfer reaction have been discussed in general on the basis of the theoretical considerations.
Zusammenfassung Mechanismen für den intermolekularen Ladungs- und Elektronenübergang bei gelösten Molekülen in elektronisch angeregten Zuständen werden im Zusammenhang mit der Bildung von Exiplexen und der Fluoreszenzlöschung diskutiert. Für den Elektronenübergang wird ein neues Modell vorgeschlagen, das quantenmechanisch untersucht wird. Dadurch wird einigen einfachen und intuitiven Vorstellungen zum Elektronenübergang eine breitere theoretische Grundlage gegeben. Zur Überprüfung des Modells wird ein Experiment vorgeschlagen. Ferner werden auf der Grundlage theoretischer Überlegungen mögliche Zusammenhänge zwischen der Bildung eines sehr schwachen charge transfef-Komplexes, der Bildung eines Exiplexes und dem Elektronenübergang diskutiert.

Résumé Les mécanismes de transfert de charge intermoléculaire et de transfert d'électrons dans les états électroniques excités de molécules solutées sont discutés en relation avec la formation d'exciplex et les réactions d'extinction de fluorescence en solution. On propose et on étudie quantiquement un nouveau modèle pour les processus de transfert d'électrons. Il donne une base théorique plus rigoureuse à certains représentations naïves et intuitives du transfert d'électron. On suggère une expérience pour étudier la validité de ce modèle. Enfin les rapports possibles entre la formation de complexes CT très faibles, la formation d'exciplex et la réaction de transfert d'électrons a été discutée de façon générale sur la base de considérations théoriques.
  相似文献   

13.
Contributions of different electronic states to Raman scattering have been studied by critical analyses of Raman excitation profiles (REPs) of several normal modes of vibration of three isomeric phenyl pyridines. In this context, possible structures and other interesting properties of the three molecules in the excited electronic states have been discussed. Normal mode characteristics are also described. Most likely a singlet state, lying in the vacuum ultraviolet region with respect to the ground state, is found to be playing a very significant role in the scattering phenomena.  相似文献   

14.
Electron transfer from the first excited singlet state of a polymethine cyanine dye. DODCI, to various electron acceptors (p-benzoquinone,p-dinitrobenzene and methylviologen) was investigated using picosecond fluorescence and absorption spectroscopy. The electron transfer to methylviologen was confirmed by conventional nanosecond laser spectroscopy. Its efficiency, as expressed by the ratio k5/(k4 + k5) = 0.07. can be explained by coulombic repulsion in the initial radical pair. On the other hand, although fluorescence quenching by p-BQ and p-DNB is very efficient, no electron transfer was observed.  相似文献   

15.
The quenching of the excited singlet and triplet states of phenosafranine by aliphatic amines was investigated in acetonitrile and methanol. The rate constants for the quenching of the excited singlet state depend on the one-electron redox potential of the amine suggesting a charge transfer process. However, for the triplet state, quenching dependence on the redox potential either is opposite to the expectation or there is not dependence at all. Moreover, in MeOH the first-order rate constant for the decay of the triplet state, k(obs) presents a downward curvature as a function of the amine concentration. This behavior was interpreted in terms of the reversible formation of an intermediate excited complex, and from a kinetic analysis the equilibrium constant K(exc) could be extracted. The log K(exc) shows a linear relationship with the pKb of the amine. On the other hand, for the triplet state quenching in acetonitrile k(obs) varies linearly with the amine concentration. Nevertheless, the quenching rate constants correlate satisfactorily with pKb and not with the redox potential. The results were interpreted in terms of a proton transfer quenching, reversible in the case of MeOH and irreversible in MeCN. This was further confirmed by the transient absorption spectra obtained by laser flash photolysis. The transient absorption immediately after the triplet state quenching could be assigned to the unprotonated form of the dye. At later times the spectrum matches the semireduced form of the dye. The overall process corresponds to a one-electron reduction of the dye mediated by the deprotonated triplet state.  相似文献   

16.
A novel surface fabrication methodology has been accomplished, aimed at efficient anodic photocurrent generation by a photoexcited porphyrin on an ITO (indium-tin oxide) electrode. The ITO electrode was submitted to a surface sol-gel process with titanium n-butoxide in order to deposit a titanium monolayer. Subsequently, porphyrins were assembled as monolayers on the titanium-treated ITO surface via phosphonate, isophthalate, and thiolate groups. Slipped-cofacial porphyrin dimers, the so-called artificial special pair at the photoreaction center, were organized through imidazolyl-to-zinc complementary coordination of imidazolylporphyrinatozinc(II) units, which were covalently immobilized by ring-closing olefin metathesis of allyl side chains. The modified surfaces were analyzed by means of X-ray photoelectron spectroscopy. Photoirradiation of the porphyrin dimer generated a large anodic photocurrent in aqueous electrolyte solution containing hydroquinone as an electron sacrificer, due to the small reorganization energy of the dimer. The use of different linker groups led to significant differences in the efficiencies of anodic photocurrent generation. The apparent flat-band potentials evaluated from the photocurrent properties at various pH values and under biased conditions imply that the band structure of the ITO electrode is modified by the anchoring species. The quantum yield for the anodic photocurrent generation by photoexcitation at the Soret band is increased to 15 %, a surprisingly high value without a redox cascade structure on the ITO electrode surface, while excitation at the Q band is not so significant. Extensive exploration of the photocurrent properties has revealed that hot injection of the photoexcited electron from the S2 level into the conduction band of the ITO electrode takes place before internal conversion to the S1* state, through the strong electronic communication of the phosphonyl anchor with the sol-gel-modified ITO surface.  相似文献   

17.
The resonance Raman spectra of β-carotene have been obtained at low temperature. The excitation profiles of ν1 (1525 cm?1) and 2ν1 (3043 cm?1) are analysed in terms of the Albrecht theory. The overlap integrals between the vibrational wavefunctions of the ground and the first excited electronic states are shown to be the most important factor in determining the resonance Raman intensities of this molecule. Information on the structure of the electronically excited state has been obtained.  相似文献   

18.
《印度化学会志》2021,98(11):100181
Synthesis of luminescent carbon dots (CDs) from biological waste materials is gaining more attention in the present-day scenario. We have synthesized highly luminescent (luminescence quantum yield, φ ​= ​19.1%), water-soluble CDs from a postconsumer waste silk cloth via a facile hydrothermal synthetic method. The resulting CDs are characterized and their photophysical properties are studied in detail. The electron transfer dynamics of CDs in presence of methyl viologen dichloride hydrate (MV2+) is systematically investigated in this work. Knowledge of the electron transfer dynamics of CDs is essential in the structural elucidation of CDs, prediction of sensing mechanisms and utilizing the CDs in energy storage devices.  相似文献   

19.
20.
In this paper, time-resolved resonance Raman (TR3) spectra of intermediates generated by proton-induced electron-transfer reaction between triplet 2-methoxynaphthalene ((3)ROMe) and decafluorobenzophenone (DFBP) are presented. The TR3 vibrational spectra and structure of 2-methoxynaphthalene cation radical (ROMe(?+)) have been analyzed by density functional theory (DFT) calculation. It is observed that the structure of naphthalene ring of ROMe(?+) deviates from the structure of cation radical of naphthalene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号