首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
有机氟材料的结构与性能及其在涂料中的应用   总被引:18,自引:0,他引:18  
高性能、低(无)污染是当今涂料发展的主要趋势,氟树脂独特的结构特点使它具有很高的耐热性,耐化学性和耐候性,独特的电学性能,优良的表面性能和光学特性,从而使其成为可能同时具有这两项要求的材料之一,本文着重介绍了目前几种最主要的氟树脂的结构与性能,如聚四氟乙烯(PTFT),聚偏二氟乙烯(PVDF)、氟烯烃/乙烯基醚共聚树脂(FEVE)及全氟聚醚 (PFPE)等。另外还对当前国内,外含氟高聚物在涂料应用上的研究进展作了一些介绍。  相似文献   

2.
Polytetrafluoroethylene (PTFE) has been employed in many engineering applications, mainly due to its special properties such as high electrical resistivity, high melting temperature, chemical inertness, corrosion resistance and very low friction. Although there are many works on PTFE, very few attempts have been made to understand the fracture behavior of this material. For this reason, the load-displacement behavior of double-edge cracked specimens of PTFE was examined and modeled and is reported in this paper. Specimens were tested under monotonic tensile load in quasi-static conditions at constant temperature. Images of the region around the crack were captured with a high-resolution camera and then processed by digital image correlation to obtain the displacement fields. Using these data, values of crack tip opening displacement and crack extension were estimated. To model the behavior of PTFE, a constitutive phenomenological model based on saturation and power law expressions combined with a damage evolution equation is proposed. The predictions are in good agreement with the experimental data.  相似文献   

3.
阮文红 《高分子科学》2013,31(3):377-387
To improve creep resistance of directional polytetrafluoroethylene (PTFE) films, epoxy grafted nano-SiO2 is mixed with PTFE powder before sintering and calender rolling. The aligned macromolecular chains (especially those in amorphous region) of the composite films can be bundled up by the nanoparticles to share the applied stress together. In addition, incorporation of silica nanoparticles increases crystallinity of PTFE and favors microfibrillation of PTFE in the course of large deformation. As result, PTFE films exhibit lower creep strain and creep rate, and higher tensile strength and hardness. The work is believed to open an avenue for manufacturing high performance fluoropolymers by nano-inclusions.  相似文献   

4.
Poly(tetrafluoroethylene) (PTFE) is a material widely known for its inertness and excellent electrical properties. It is also transparent in the UV region and has a reasonable thermal conductivity. These properties make PTFE a suitable material for the separation capillary in capillary electrophoresis. Differences in the chemistry of the capillary wall compared to fused silica (FS) can make PTFE an interesting alternative to FS for some special applications. In this work, properties of a commercial PTFE capillary of approx. 100 microm i.d. were investigated, including the dependence of electroosmotic flow (EOF) on pH for unmodified and dynamically modified PTFE, optical properties, and practical aspects of use. The main problems encountered for the particular PTFE capillary used in this study were that it was mechanically too soft for routine usage and the crystallinity of the PTFE caused light scattering, leading to high background absorbance values in the low UV region. The profile of the EOF versus pH for bare PTFE surprisingly showed significantly negative EOF values at pH < 4.2, with an EOF of -30 x 10(-9) m2 V(-1) s(-1) being observed at pH 2.5. This is likely to be caused by either impurities or additives of basic character in the PTFE, so that after their protonation at acidic pH they establish a positive charge on the capillary wall and create a negative EOF. A stable cationic semi-permanent coating of poly(diallyldimethylammonium chloride) (PDDAC) could be established on the PTFE capillary and led to very similar magnitudes of EOF to those observed with FS. A hexadecanesulfonate coating produced a cathodic EOF of extremely high magnitude ranging between +90 and +110 x 10(-9) m2 s(-1) V(-1), which are values high enough to allow counter-EOF separation of high mobility inorganic anions. In addition, pH-independent micellar electrokinetic capillary chromatography (MEKC) separations could be easily realised due to hydrophobic adsorption of sodium dodecylsulfate (used to form the micelles) on the wall of the PTFE capillary. The use of polymers that would be mechanically more robust and optically transparent in the low-UV region should make such CE capillaries an interesting alternative to fused silica.  相似文献   

5.
Fluorinated polymers are important materials that are widely used in many areas as taking the advantage of inertness to chemical corrosion, prominent weather resistance, low flammability, and good thermal stability. Poly(vinylidene fluoride)(PVDF) based fluoropolymers is the most common type of commercial fluoropolymer especially used as dielectric materials. However, there are always some shortcomings in practical applications, so it is necessary to modify PVDF-based fluoropolymers for better application. Controlled/living radical polymerization(CRP) and related techniques have become a powerful approach to tailoring the chemical and physical properties of materials and have given rise to great advances in modification of PVDF-based fluoropolymers.  相似文献   

6.
Polytetrafluoroethylene (PTFE) is an important engineering material with a low coefficient of friction but a high rate of wear. As a semi‐crystalline polymer, its wear resistance is related to its micro‐morphology. Friction and wear properties of semi‐crystalline non‐spherulitic PTFE have been widely studied, but no investigation is reported about tribological properties of spherulitic PTFE due to difficulties in finding such properties. In this paper, friction and wear properties of PTFE with spherulitic micro‐morphology are studied for the first time. The results show that, first, under the same experimental condition, when two kinds of PTFE are rubbed against the steel disc, the number and size of debris of spherulitic PTFE are much less and smaller than that of debris of PTFE without spherulitic crystals. This means that the wear resistance of spherulitic PTFE is better than that of semi‐crystalline PTFE without spherulitic micro‐morphology. Second, the friction property of spherulitic PTFE is also different from that of PTFE without spherulitic crystals. Finally, the friction and wear mechanisms of spherulitic PTFE and non‐spherulitic PTFE are compared.  相似文献   

7.
The potential of an optical sensor based on mid-infrared spectroscopy, utilising a zinc selenide (ZnSe) attenuated total reflectance (ATR) element coated with an amorphous Teflon polymer, to determine chlorinated hydrocarbon species (CHC) in an aqueous environment is examined. The polymer coating concentrates the analytes within the penetration depth of the Fourier transform infrared (FTIR) evanescent wave and excludes water from the region. Teflon AF (Amorphous Fluoropolymer) is a family of amorphous copolymers based on polytetrafluoroethylene (PTFE), and is commercially available in two polymeric grades. Teflon AF is highly amorphous in nature with a large 'void volume', exhibits excellent chemical resistance and low water absorption. Such properties identify it as an excellent candidate for enrichment coating on an ATR/FTIR sensor. The potential of both polymeric grades of Teflon AF as enrichment membranes for ATR/FTIR analysis of CHC species was examined and contrasted. A rapid, repeatable, reversible response was observed with both grades to a range of CHC species. Linear responses in the mg/L region, with detection limits in the low mg/L region were achieved with the system used.  相似文献   

8.
In this study, the influence of irradiation temperature on mechanical properties of three fluoropolymers and on grafting of styrene into the polymers by the pre-irradiation method was investigated. Electron paramagnetic resonance spectroscopy and infrared spectroscopy were used to characterize the irradiated polymers regarding trapped radical species and changes in the chemical structure, respectively. For poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) the irradiation temperature was found to be an important factor for tensile strength and elongation at break of the pre-irradiated film. No strong effect of irradiation temperature on the mechanical properties was noticed for poly(tetrafluoroethylene-co-ethylene) (ETFE); however the yield of grafting drops at high irradiation temperatures. Finally, mechanical properties of poly(tetrafluoroethylene) (PTFE) were found to be dramatically altered, even if the film was irradiated at elevated temperature.  相似文献   

9.
Semicrystalline fluoropolymers including poly(tetrafluoroethylene) (PTFE), a 8 mol % hexafluoropropylene (HFP)/92% TFE random copolymer (FEP), and poly(vinyl fluoride) (PVF) were studied using thermally stimulated current depolarization (TSC), ac dielectric, and other thermal analysis techniques. The TSC thermal sampling (TS) technique is emphasized here for the detection of broad and weak “cooperative” relaxations with all three of the polymers studied exhibiting two cooperative (i.e., relatively high apparent activation energy) transitions. The well-studied low-temperature γ relaxation in PTFE at ca. −100°C is characterized by this method as well as the γ relaxation in the less crystalline FEP sample. Higher temperature cooperative glass transitions, associated with constrained noncrystalline regions, are found at ca. 100°C in PTFE and ca. 80°C in FEP at TSC frequencies. Comparisons with relaxation studies of linear polyethylene are made, and the effects of crystallinity on the various transitions are discussed. The unique characterization by the TSC-TS technique in the detection of multiple “cooperative” relaxations, even in the case of overlapping transitions, is emphasized here. An example is the low-temperature relaxation in FEP. Two cooperative transitions were detected in PVF. The higher temperature one at ca. 45°C is the glass transition, as is well known in the literature. More information is needed to confirm the molecular origin and the effects of crystallinity and chemical structure on the low-temperature cooperative transition in PVF. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Metal-containing amorphous hydrogenated carbon films are of high interest for industrial applications because of their excellent frictional properties, their high abrasive wear resistance and their electrical conductivity, which can be adjusted in a range of 10–12 orders of magnitude. In order to get insight into the mechanical and electrical properties it is necessary to study the nanostructure of the films. The structure consists of small nanometer sized metallic or carbidic particles, which are embedded in a three dimensional amorphous hydrogen-carbon matrix. Anomalous small angle X-ray scattering (ASAXS) and scanning tunneling microscopy (STM) have been used to determine size- and distance-distributions of the particles as a function of metal content. Problems and restrictions of both methods will be discussed. Furthermore the capabilities of scanning probe techniques to distinguish different materials on a nanometer scale (material contrast) have been studied employing barrier height imaging (dI/dz) and friction force microscopy.Dedicated to Professor Dr. rer. nat. Dr. h. c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

11.
By using the technique of thermomechanical spectroscopy, an amorphous and three crystalline (high melting, intermediate, and low melting) blocks of the topological structures of polytetrafluoroethylene (PTFE) powder were characterized and their behavior under γ-radiation up to 2420 kGy was explored. The powder has an anisotropic topological structure. Starting from a dose of 4 kGy, the structure is radically changed with the long-range orientation of chains in the intermediate and high melting crystalline blocks of PTFE being replaced by a short range orientation of cluster association structures. The temperatures of glass transition and melting point continuously decreased with an increased dose of irradiation. The influence of γ-radiation on the powder and sheet of PTFE are essentially the same, the formation of amorphous character.  相似文献   

12.
In the past 80 years, fluoropolymers have found broad applications in both industrial and academic settings, owing to their unique physicochemical properties. Copolymerizations of fluoroalkene feedstocks present an important avenue to obtain high-performance materials by merging intrinsic attributes of fluorocarbons and great versatility of comonomers. Recently, while massive investigations have disclosed the great potentials of precisely synthesized polymers, researchers have made considerable efforts to approach well-defined fluorinated copolymers. This minireview discusses challenges in controlled radical copolymerizations (CRCPs) of fluoroalkenes and provides a concise perspective on recent progress in CRCPs of fluoroalkenes (e.g., tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropene, perfluoroalkyl vinyl ethers) with non-fluorinated vinyl comonomers, which have enabled on-demand preparations of various main-chain fluoropolymers with predefined molar masses, low dispersities, as well as regulable chemical compositions and sequences. The synthetic advantages of CRCPs will promote controlled and facile access to customized fluoropolymers for high-tech applications such as batteries, coatings and so on.  相似文献   

13.
The graphene family of nanomaterials (GFN) have a common carbon lattice base structure but represent a diverse range of materials with distinct chemical and physical characteristics. These characteristics are determined by the fabrication method and impart each material with specific chemical properties which govern interaction with cells and biomolecules, and physical properties that give unique nanotopography, stiffness, and electrical properties. Remarkably, members of the GFN have been shown to promote tissue formation and influence cell differentiation in a variety of tissue types, including neural, bone, and cardiac muscle, making them of high interest to the biomedical field. The diverse range of materials and experimental setups in the literature make uncovering the mechanism of action challenging. Nevertheless, it is becoming clear that the ability of GFN to form non-covalent interactions (π-π, hydrogen bonding, electrostatic) with biomolecules may increase their bioavailability via sequestering/concentration/conformation protection to induce cell differentiation. In addition to the chemical properties, the stimulation of mechanosensing pathways, cytoskeletal rearrangement, and enhanced electrical activity of cells on GFN substrates demonstrates the importance of the physical properties in directing cell differentiation. The understanding of the mechanism behind the ability of GFN to enhance cell differentiation will allow the design and selection of materials with the desired properties for tissue repair and regeneration.  相似文献   

14.
化学气相沉积(Chemical vapor deposition,CVD)法制备的石墨烯薄膜具有质量高、可控性好、可放大等优点,近年来受到了学术界和工业界的广泛关注。然而,近期研究结果表明,在高温CVD生长石墨烯的过程中,伴随着许多副反应,这些副反应会导致石墨烯薄膜表面沉积大量的无定形碳污染物,造成石墨烯薄膜的“本征污染”现象。同时,这些污染物的存在会导致转移后的石墨烯薄膜表面更脏,对石墨烯材料和器件的性能带来严重影响。这也是CVD石墨烯薄膜的性能一直无法媲美机械剥离石墨烯的重要原因之一。事实上,超洁净生长方法制备得到的超洁净石墨烯薄膜在诸多指标上都给出了目前文献报道的最好结果,代表着石墨烯薄膜材料制备技术的发展前沿。本文首先对CVD法制备石墨烯过程中表面污染物的形成机理进行分析,然后综述了超洁净石墨烯薄膜的制备方法,并列举了超洁净石墨烯薄膜的优异性质。最后,总结并展望了超洁净石墨烯未来可能的发展方向和规模化制备面临的机遇与挑战。  相似文献   

15.
《Electroanalysis》2003,15(17):1349-1363
Diamond as a high performance material occupies a special place due to its in many ways extreme properties, e.g., hardness, chemical inertness, thermal conductivity, optical properties, and electric characteristics. Work mainly over the last decade has shown that diamond also occupies a special place as an electrode material with interesting applications in electroanalysis. When made sufficiently electrically conducting for example by boron‐doping, ‘thin film' and ‘free–standing' diamond electrodes exhibit remarkable chemical resistance to etching, a wide potential window, low background current responses, mechanical stability towards ultrasound induced interfacial cavitation, a low ‘stickiness' in adsorption processes, and a high degree of ‘tunability' of the surface properties. This review summarizes some of the recent work aimed at applying conductive (boron‐doped) diamond electrodes to improve procedures in electroanalysis.  相似文献   

16.
The modification of poly(ethylene terephthalate) with 1,4‐cyclohexanedimethanol and the modification of poly(1,4‐cyclohexylenedimethylene terephthalate) with ethylene glycol or isophthalic acid retard the crystallization of the copolyester backbone, and over a wide range of comonomer concentrations, very slowly crystallizing, essentially amorphous copolyesters are formed. These amorphous copolyesters possess attractive physical properties such as toughness, low color, and chemical resistance, and since their first commercial introduction in 1977, these copolyesters have become the basis of a large and growing plastics business for Eastman Chemical Co. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5847–5852, 2004  相似文献   

17.
In the past two decades, many research is being carried out on coating of textile membranes with conductive polymers. In order to functionalize the textile membranes, coating of different intrinsically conductive polymers can be applied on these membranes through appropriate coating techniques like electrochemical polymerization, wet chemical oxidation and chemical vapor deposition (CVD). Noticeably, CVD process is one of the most suitable and environment friendly technique. In this research, microporous polyester and polytetrafluoroethylene (PTFE) membranes were coated with conductive poly(3,4‐ethylenedioxythiophene) (PEDOT) by CVD process in the presence of ferric(III)chloride (FeCl3) used as an oxidant. Polymerization of PEDOT on the surface of membranes and pore size was examined by optical microscope and scanning electron microscopy (SEM). Structural analysis investigated with ATR‐FTIR, which revealed the successful deposition of PEDOT on membranes without damaging their parent structures. The amount of PEDOT in PEDOT‐coated polyester and PTFE membranes was explored with the help of thermogravimeteric analysis. Electrical resistance values of PEDOT‐coated membranes were measured by two probe method. The effect of different electrolyte solutions such as, distilled H2O, Na2SO4, HCl, and H2SO4 on electrical properties of produced conductive membranes was investigated after dipping for certain period of time. It was found that membranes dipped in H2SO4 show very low electrical resistance values, i.e. 0.85 kΩ for polyester membrane and 1.17 kΩ for PTFE membrane. The obtained PEDOT‐coated electro‐active membranes may find their possible utility in fuel cells, enzymatic fuel cells, and antistatic air filter applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Specific properties of PTFE composites filled with ultradisperse detonation diamonds (UDDs) with different surface chemistries are studied. It is found for the first time that filler in the form of UDDs affects not only the rate of PTFE thermal decomposition in vacuum pyrolysis, but also the chemical composition of the products of degradation. The wear resistance of UDD/PTFE composites is shown to depend strongly on the UDD surface chemistry. The presence of UDDs in a PTFE composite is found to result in perfluorocarbon telomeres, released as a readily condensable fraction upon composite pyrolysis. The chemical interaction between PTFE and UDDs, characterized by an increase in the rate of gas evolution and a change in the desorbed gas’s composition, is found to occur at temperature as low as 380°C. It is shown that the intensity of this interaction depends on the concentration of oxygen-containing surface groups, the efficiency of UDDs in terms of the composite’s wear resistance being reduced due to the presence of these groups. Based on the experimental data, a conclusion is reached about the chemical interaction between UDDs and a PTFE matrix, its dependence on the nanodiamond surface chemistry, and its effect on a composite’s tribology.  相似文献   

19.
The formation of a three-dimensional network in polytetrafluoroethylene (PTFE) exposed to ionizing radiation at temperatures above the crystallite melting temperature—a phenomenon that has been revealed and studied in the last decade—is considered. A change in the structure and properties of PTFE during its radiation-thermal modification under the specified conditions was analyzed. It was shown that such modification imparts to PTFE a set of additional valuable properties including an enhanced modulus and breaking strength, a low creep, a high wear resistance, enhansed radiation resistance and transparency, thus opening new frontiers for practical application of this polymer.  相似文献   

20.
聚苯硫醚、聚四氟乙烯均是耐高温、耐腐蚀的树脂,同时聚四氟乙烯有极低表面能,而聚苯硫醚与金属有良好结合力,结合二者的优点,有望制备出集合耐腐蚀、耐高温、超疏水等优异性能为一体的功能涂层,因此以聚苯硫醚、聚四氟乙烯为主要原料的复合涂料自1992年以来便倍受关注。本文从聚苯硫醚、聚四氟乙烯各自的性能出发,综述了聚苯硫醚/聚四氟乙烯复合涂层三种不同制备工艺:分层涂覆、共混涂覆、梯度涂覆;详细说明了涂层的五大优异性能:耐腐蚀性、超疏水性能、阻垢性能、耐高温性以及耐磨性能,最后本文还描述了聚苯硫醚/聚四氟乙烯复合涂层的广阔应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号