首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
黄燕  黄晓  许旋 《物理化学学报》2013,29(6):1225-1232
应用密度泛函理论PBE0 方法研究具有分子导线潜在应用的金属串配合物M3(dpa)4Cl2 (1: M=Co, 2: M=Rh, 3: M=Ir; dpa=dipyridylamide)在电场作用下的几何和电子结构. 结果表明: 配合物基态均是二重态. 1和2的M36+金属链形成三中心三电子σ键, 3 中M36+形成三中心四电子σ键且存在弱的δ键. 随金属原子周期数增大其M―M键增强、LUMO与HOMO能隙减小、金属原子的反铁磁耦合减弱以至消失且自旋密度向配体的离域增强. 在Cl4→Cl5 电场作用下, 低电势端的M3-Cl5 键缩短, 高电势端的M2―Cl4 键增长, M―M平均键长略为缩短, M―M键增强, 有利于分子线的电子传递; 分子能量降低, 偶极矩线性增大. 低电势端Cl5的负电荷向高电势端Cl4 转移, 且3 中金属原子的正电荷由高电势端向低电势端的转移较明显, 自旋电子由低电势端向高电势端金属原子移动, 但桥联配体dpa-与M和Cl 所在的分子轴间没有电荷转移. 电场使LUMO与HOMO能隙减小, 有利于分子的电子输运. 随金属原子周期数增大, 电场作用下M―M平均键长变化减小, LUMO、HOMO的能级交错现象减少.  相似文献   

2.
The quantum-chemical CNDO/2 method was used in connection with the anionic polymerization of unsaturated compounds initiated by organoaluminium compounds. Comparison of the results for model compounds Al(XHn)3 H2AlXHPn (X = O, N, C) with the data for analogous lithium and magnesium derivatives showed that the polarity of the MtX bond (calculated taking account of the metal valency) and the order of this bond are reactivity indices. According to these indices, amido- and alkoxy-alkylaluminium derivatives should be reactive in initiation. Absent of activity for the alkoxy derivatives is probably due to the stability of their aggregates. The optimization of the geometry of the molecule CH3CH(COOCH3)AlH2, modelling the propagation active centre, showed that, as a result of the competing interaction of the Al atom with the growing chain and the side radical, the AlC bond is greatly weakened. Its reactivity evaluated from the above mentioned indices exceeds that of alkylaluminium amide initiators. The geometry of the complex of the model compound, CH3AlH2, with the methyl acrylate molecule was favourable for the subsequent insertion of the monomer into the chain. Possible reasons for the discrepancy between the experimental and calculated data are considered for acrylonitrile.  相似文献   

3.
Rhodium PCcarbeneP complexes 1‐L {L=PPh3, PPh2(C6F5)} react with isothiocyanate, carbodiimide and disulphide to enable C?S, C?N and S?S bond cleavage. The cleaved molecules are sequestered by the metal center and the pincer alkylidene linkage, forming η2‐coordinated sulfide or imide centered pincer complexes. When a C?S or S?S bond is cleaved, the resulting complexes can bridge two rhodium centers through sulphur forming dimeric complexes and eliminating a monodentate phosphine ligand.  相似文献   

4.
A mechanistic study has been carried out on the homogeneous olefin polymerization/oligomerization catalyst formed from Cp2ZrMe2 and methylaluminoxane, (MeAlO)x, in toluene. Formal transfer of CH3 from Zr to Al yields low concentrations of Cp2ZrMe+ solvated by [(Me2AlO)y(MeAlO)xy]y. The cationic Zr species initiates ethylene oligomerization by olefin coordination followed by insertion into the Zr–CH3 bond. Chain transfer occurs by one of two competing pathways. The predominant one involves exchange of Cp2Zr–P+ (P=growing ethylene oligomer) with Al–CH3 to produce another Cp2ZrMe+ initiator plus an Al-bound oligomer. Terminal Al–C bonds in the latter are ultimately cleaved on hydrolytic workup to produce materials with saturated end groups. Concomitant chain transfer occurs by sigma bond metathesis of Cp2Zr–P+ with ethylene. Metathesis results in cleavage of the Zr–C bond of the growing oligomer to produce materials also having saturated end groups; and a new initiating species, Cp2Zr-CHCH2+. The two chain transfer pathways afford structurally different oligomers distinguishable by carbon number and end group structure. Oligomers derived from the Cp2ZrMe+ channel are Cn (n=odd) alkanes; those derived from Cp2Zr–CHCH2+ are terminally mono-unsaturated Cn (n=even) alkenes. Chain transfer by beta hydride elimination is detectable but relatively insignificant under the conditions employed. Propylene and 1-hexene react similarly but beta hydride elimination is the predominant chain transfer step. The initial Zr-alkyl species produces a Cp2ZrH+ complex that is the principle chain initiator. Chain transfer is fast relative to propagation and the products are low molecular weight oligomers.  相似文献   

5.
Dinuclear compounds of early transition metals with a high metal–metal bond order are of fundamental interest due to their intriguing bonding situation and of practical interest because of their potential involvement in catalytic processes. In this work, two isomers of V2H2 have been generated in solid Ne by the reaction between V2 and H2 and detected by infrared spectroscopy: the linear HVVH molecule (3Σg ground state), which is the product of the spin-allowed reaction between V2 (3Σg ground state) and H2, and a lower-energy, folded V2(μ-H)2 isomer (1A1 ground state) with two bridging hydrogen atoms. Both isomers are characterized by metal–metal bonding with a high bond order; the orbital occupations point to quadruple bonding. Irradiation with ultraviolet light induces the transformation of linear HVVH to folded V2(μ-H)2, whereas irradiation with visible light initiates the reverse reaction.  相似文献   

6.
The synthesis of coinage metal aluminyl complexes, featuring M–Al covalent bonds, is reported via a salt metathesis approach employing an anionic Al(i) (‘aluminyl’) nucleophile and group 11 electrophiles. This approach allows access to both bimetallic (1 : 1) systems of the type (tBu3P)MAl(NON) (M = Cu, Ag, Au; NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) and a 2 : 1 di(aluminyl)cuprate system, K[Cu{Al(NON)}2]. The bimetallic complexes readily insert heteroallenes (CO2, carbodiimides) into the unsupported M–Al bonds to give systems containing a M(CE2)Al bridging unit (E = O, NR), with the μ-κ1(C):κ2(E,E′) mode of heteroallene binding being demonstrated crystallographically for carbodiimide insertion in the cases of all three metals, Cu, Ag and Au. The regiochemistry of these processes, leading to the formation of M–C bonds, is rationalized computationally, and is consistent with addition of CO2 across the M–Al covalent bond with the group 11 metal acting as the nucleophilic partner and Al as the electrophile. While the products of carbodiimide insertion are stable to further reaction, their CO2 analogues have the potential to react further, depending on the identity of the group 11 metal. (tBu3P)Au(CO)2Al(NON) is inert to further reaction, but its silver counterpart reacts slowly with CO2 to give the corresponding carbonate complex (and CO), and the copper system proceeds rapidly to the carbonate even at low temperatures. Experimental and quantum chemical investigations of the mechanism of the CO2 to CO/carbonate transformation are consistent with rate-determining extrusion of CO from the initially-formed M(CO)2Al fragment to give a bimetallic oxide that rapidly assimilates a second molecule of CO2. The calculated energetic barriers for the most feasible CO extrusion step (ΔG = 26.6, 33.1, 44.5 kcal mol−1 for M = Cu, Ag and Au, respectively) are consistent not only with the observed experimental labilities of the respective M(CO)2Al motifs, but also with the opposing trends in M–C (increasing) and M–O bond strengths (decreasing) on transitioning from Cu to Au.

The differential reactivity of copper, silver and gold aluminyl compounds towards CO2 and other heteroallenes are probed by experimental and quantum chemical methods.  相似文献   

7.
Aluminium‐ and gallium‐functionalised alkenylalkynylgermanes, R12Ge(C?C?R2)[C{E(CMe3)2}?C(H)?R2] (E=Al, Ga), exhibit a close contact between the coordinatively unsaturated Al or Ga atoms and the α‐C atoms of the intact ethynyl groups. These interactions activate the Ge?C(alkynyl) bonds and favour the thermally induced insertion of these C atoms into the E?C(vinyl) bonds by means of 1,1‐carbalumination or 1,1‐carbagallation reactions. For the first time the latter method was shown to be a powerful alternative to known metallation processes. Germacyclobutenes with an unsaturated GeC3 heterocycle and endo‐ and exocyclic C?C bonds resulted from concomitant Ge?C bond formation to the β‐C atoms of the alkynyl groups. These heterocyclic compounds show an interesting photoluminescence behaviour with Stokes shifts of >110 nm. The fascinating properties are based on extended π‐delocalisation including σ*‐orbitals localised at Ge and Al. High‐level quantum chemical DFT and TD‐DFT calculations for an Al compound were applied to elucidate their absorption and emission properties. They revealed a biradical excited state with the transfer of a π‐electron into the empty p‐orbital at Al and a pyramidalisation of the metal atom.  相似文献   

8.
The hydrogen chemical ionization (H2 CI) mass spectra of a range of metal(II) (Ni, Cu, Co, Pt), metal (III) (Al, Mn, Ga, Fe (bearing a single axial ligand)) and metal(IV) (Si, Ge, Sn (bearing two axial ligands) and V (as V?O2+)) porphyrins have been determined, The spectra are highly dependent on the coordinated metal, rather than the axial ligand(s) (where present). Ni(II), Cu(II), Mn(II or III), Ga(III), Ge(IV), Fe(III) and Sn(IV) porphyrins fragment via hydrogenation and demetallation, followed by cleavage of the resulting porphyrinogens at the meso(bridge) positions to give mono- and di-pyrrolic fragments. Tripyrrolic fragments are also observed in the case of Ni(II), Cu(II) and Sn(IV). Fragmentations of this type are similar to those observed for free-base porphyrins. In the case of Pt(II), Co(II), Al(III), Si(IV) and V(IV) (as vanadyl), the dipyrrolic fragment ions are either very weak or completely absent; hence their H2CI spectra contain limited structural information. This variable CI behaviour may be related to the relative stabilities of the metalloporphyrins together with the multiple stable valency states exhibited by several metals.  相似文献   

9.
Dinuclear compounds of early transition metals with a high metal–metal bond order are of fundamental interest due to their intriguing bonding situation and of practical interest because of their potential involvement in catalytic processes. In this work, two isomers of V2H2 have been generated in solid Ne by the reaction between V2 and H2 and detected by infrared spectroscopy: the linear HVVH molecule (3Σg? ground state), which is the product of the spin‐allowed reaction between V2 (3Σg? ground state) and H2, and a lower‐energy, folded V2(μ‐H)2 isomer (1A1 ground state) with two bridging hydrogen atoms. Both isomers are characterized by metal–metal bonding with a high bond order; the orbital occupations point to quadruple bonding. Irradiation with ultraviolet light induces the transformation of linear HVVH to folded V2(μ‐H)2, whereas irradiation with visible light initiates the reverse reaction.  相似文献   

10.
Anionic polymerization of methyl methacrylate (MMA) initiated with late transition‐metal halides [manganese chloride (MnCl2), iron dichloride (FeCl2), iron trichloride (FeCl3), cobalt chloride (CoCl2), or nickel bromide (NiBr2)]/organolithium [nButyllithium (nBuLi) or phenyllithium (PhLi)]/triisobutylaluminum (iBu3Al) systems is described. Except for the system with NiBr2, the polymerizations of MMA afforded narrow molecular weight distribution poly(methyl methacrylate)s (PMMAs) with high molecular weights in quantitative yields at 0 °C in toluene. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) analyses of the PMMAs obtained by the systems with FeCl2, FeCl3, and CoCl2 revealed that the polymers had hydrogen (H) at both chain ends. Accordingly, the reaction of the transition‐metal halides with the organolithium in the presence of iBu3Al should result in the formation of transition‐metal hydride [M‐H]? species, which was nucleophilic enough to initiate the MMA polymerization. Because the presence of a six‐membered cyclic structure resulting from backbiting was confirmed from the MALDI‐TOF MS analyses of the PMMA obtained with the metal halide (FeCl2, FeCl3, or CoCl2)/organolithium systems in the absence of iBu3Al, the introduction of H at the ω‐chain end indicated that iBu3Al should prevent the backbiting. However, the MnCl2/nBuLi/iBu3Al initiating system gave PMMAs bearing H at the α chain end and six‐membered cyclic structure at the ω chain end. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1962–1977, 2003  相似文献   

11.
The Al=Al double bond is elusive in chemistry. Herein we report the results obtained via combined photoelectron spectroscopy and ab initio studies of the LiAl2H4 cluster that confirm the formation of a conventional Al=Al double bond. Comprehensive searches for the most stable structures of the LiAl2H4 cluster have shown that the global minimum isomer I possesses a geometric structure which resembles that of Si2H4, demonstrating a successful example of the transmutation of Al atoms into Si atoms by electron donation. Theoretical simulations of the photoelectron spectrum discovered the coexistence of two isomers in the ion beam, including the one with the Al=Al double bond.  相似文献   

12.
Abstract

Recent studies1 have shown that the mono oxidized phosphanolminatophosphane Me3SiN=PPh2CH2PPh2 1 is a versatile ligand for a variety of transition metals in high and low oxidation states. This heterodifunctional ligand may bind to metals via the “hard” (N) or the “soft”(P(III)) centres; the former favours high oxidation states and “early” transition metals, the latter, low oxidation states and “late” transition metals. Monodentate or bidentate complexation is observed and in the latter case chelation or bridging is possible. Elimination of Me3SiCl from a metal halide or migration of Me3Si group to a terminal oxygen atom leads to metal nitrogen sigma bond formation. To modify the basicity at nitrogen a variety of approaches have been employed. Metathetical elimination of Me3SiX from activated halogenated aromatics leads to functionalisation at N. The R3Sn and R3Ge analogs of 1 have also been made by extensions of the Staudinger reaction. Reactions of 1 and its N-aromatic, N-Ge, and N-Sn analogs with a variety of metals wiil be described. In water, 1 produces the unstable parent imine which has been trapped as a coordination complex of Pd(II) and Pt(II) metals. The reactions of halides produces a variety of N substituted compounds of non metals (eg; =N-SePh) and metals (eg; =N-TiR3) which demonstrate the important heterodifunctional character of the ligand system.  相似文献   

13.
The earth‐metal olefin complex [Ga I (COD)2]+[Al(ORF)4]? (COD=1,5‐cyclooctadiene; RF=C(CF3)3) constitutes the first homoleptic olefin complex of any main‐group metal accessible as a bulk compound. It is straight forward to prepare in good yield and constitutes an olefin complex of a main‐group metal that—similar to many transition‐metals—may adopt the +1 and +3 oxidation states opening potential applications. Crystallographic‐, vibrational‐ and computational investigations give an insight to the atypical bonding between an olefin and a main‐group metal. They are compared to classical transition‐metal relatives.  相似文献   

14.
Acetonitrile (CH3CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C?H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C?H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH???N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp2 and sp3 bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C?H can be activated by high pressure, even at room temperature and without a catalyst.  相似文献   

15.
Additions of beryllium–halide bonds in the simple beryllium dihalide adducts, [BeX2(tmeda)] (X=Br or I, tmeda=N,N,N′,N′‐tetramethylethylenediamine), across the metal center of a neutral aluminum(I) heterocycle, [:Al(DipNacnac)] (DipNacnac=[(DipNCMe)2CH]?, Dip=2,6‐diisopropylphenyl), have yielded the first examples of compounds with beryllium–aluminum bonds, [(DipNacnac)(X)Al‐Be(X)(tmeda)]. For sake of comparison, isostructural Mg–Al and Zn–Al analogues of these complexes, viz. [(DipNacnac)(X)Al‐M(X)(tmeda)] (M=Mg or Zn, X=I or Br) have been prepared and structurally characterized. DFT calculations reveal all compounds to have high s‐character metal–metal bonds, the polarity of which is consistent with the electronegativities of the metals involved. Preliminary reactivity studies of [(DipNacnac)(Br)Al‐Be(Br)(tmeda)] are reported.  相似文献   

16.
Nitrous oxide is considered a poor ligand, and therefore only a handful of well‐defined metal–N2O complexes are known. Oxidation of copper powder with an extreme oxidant, [Ag2I2][ An ]2 ([ An ]?=[Al(OC(CF3)3)4]?) in perfluorinated hexane leads to CuI[ An ], the first auxiliary ligand‐free CuI salt of the perfluorinated alkoxyaluminate anion. The compound is capable of forming a stable and crystalline complex with nitrous oxide, Cu(N2O)[ An ], where the Cu?N2O bond is by far the strongest among all other molecular metal–N2O complexes known. Thorough characterization of the compounds together with the crystal structure of Cu(N2O)[ An ] complex supported with DFT calculations are presented. These give insight into the bonding in the Cu+–N2O system and confirm N‐end coordination of the ligand.  相似文献   

17.
Three structural modifications with incorporation of alkyl,alkoxy and vinyl bond into the skeleton of thiophene bridge in D-π-A featured organic sensitizers are specifically developed for insight into their influences on photophysical,electrochemical as well as photovoltaic properties in nanocrystalline TiO_2-based dye sensitized solar cells(DSSCs).The insertion of vinyl bond into the conjugation bridge leads to the molecular planar configuration,and the conjugation bridge of 3,4-ethylenedioxythiophene(EDOT)is prone to positively shift its highest occupied molecular orbital(HOMO).The electrochemical impedance spectroscopy(EIS)results indicate that the grafted long alkyl chain onto thiophene is favorable to suppress dye aggregation when adsorbed onto TiO_2film and modification on interface of TiO_2/dye/electrolyte,resulting in a relatively high open-circuit voltage(V_(oc)).Under optimized conditions,dye LS-4 bearing hexylthiophene as the conjugation bridge shows a relatively high overall conversion efficiency of5.45%,with a photocurrent of 11.61 mA cm~(-2),V_(oc)of 744 mV.  相似文献   

18.
Our model of metal valence band and our new concept of σ-π coordination are further discussed and confirmed in this paper.The infrared stretching frequencies of C-O decrease in the order 2056, 1886 and 1786 cm−1 in Ni(CO)4, Co(CO)4−1 and Fe(CO)4−2, which parallels the increase in d electron back-donation functions (B metal bonding functions) from 1.539, 2.121 to 2.895 on Ni, Co and Fe metals, respectively. On the other hand, the M-C bond orders increase from 1.33, 1.89 to 2.16 for Ni(CO)4, Co(CO)4−1 and Fe(CO)4−2, which parallel the increase in A(CO5σ-Mσ)-B(CO2π-Mπ) metal bonding functions from 24.61, 30.01 to 33.19, respectively. They are in agreement with our new concept of σ-π coordination proposed in the previous paper. This new concept has also been used to analyze the mechanism of the formation of Ni(CO)4, Co(CO)4−1 and Fe(CO)4−2, and to explain why they can automotively hybridize each other despite the energy differences between 3d and 4s, 4p, which are very large.The effects of metal valence bands have been accounted for on all transition metals (d1 to d8), and it is demonstrated that d orbitals increase from the Vd band upward to the Vs band, and s orbitals from the Vs band downward to the Vd band, which is equivalent to a change in orbital potential, and would modify their orbital overlap integrals with the adsorbate M.O.s and the A, B metal bonding functions significantly. The effective potentials and the percentage s, d functions of Vs, Vd and docc bands are the most important factors for determining the effect of the metal valence band. The effects of promoter and support are also altered by changes in the above factors. For Group VIII metals, the valence band provides various s and d orbitals at various potentials, in which a certain number of s and d orbitals can match better with CO adsorbate M.O.s, which explains why CO adsorbed species on Group VIII metals are all stable and adsorption rates are all relatively rapid.The periodic trends of metal A, B, AB and Dc bonding functions depend on the structures of the metal valence band, i.e. the potential levels and s, d percentage functions of Vs, Vd and docc bands. For 4d and 5d metals, the potential levels of the Vs band are high, which cannot form a strong CO 5σ-M σ bond, but the potential levels of Vd band are higher and the width of the d band is wider than those of 3d metal, so their B bonding functions are larger, and they can be used to activate saturated and unsaturated hydrocarbons. In contrast, for 3d metals, the potentials of the Vs band are lower, which favour formation of strong CO 5σ-M σ and M-C bonds, i.e. their A and Dc bonding functions are larger, which can promote coke formation. While ABDcDo can be used to characterize CO dissociation, B/A can be used to characterize C-C formation.The characteristics of various metal bonding functions on each transition metal are useful for designing catalyst composition. A typical example has been illustrated, using the possibility to select non-noble metals instead of noble metals in hydrocarbon reactions.  相似文献   

19.
The coordination chemistry of the aminophosphine chalcogenide ligands [Ph2P(O)NHR], [Ph2P(S)NHR], and [Ph2P(Se)NHR] (R = 2,6-Me2C6H3,tBu, CHPh2, CPh3) or corresponding borane derivative [Ph2P(BH3)NHR] toward group 1 and 2 metals is reviewed. The structural characterization of a huge number of mono- and bis-aminophosphine chalcogenide/borane complexes with group 1 and 2 metals—in most cases lithium, sodium, potassium, magnesium, calcium, strontium, and barium complexes—reveals a poly-metallacyclic motif in each case. The coordination takes place from adjacent chalcogen/borane and nitrogen as donor atom or group of the ligand confirming the direct bond between metal and chalcogen/borane to develop homoleptic and heteroleptic complexes. The heteroleptic group 2 metal complexes were used as pre-catalysts in hydrophosphination and hydroamination reactions. Similarly, aminophosphine chalcogenide alkaline earth metal complexes were used in the catalytic ring-opening polymerization (ROP) study of ?-caprolactone.  相似文献   

20.
The unusual bridging and semi‐bridging binding mode of tertiary phosphanes, arsanes, and stibanes in dinuclear low‐valent Group 9 complexes have been studied by density functional methods and bonding analyses. The influence of various parameters (bridging and terminal ligands, metal atoms) on the structural preferences and bonding of dinuclear complexes of the general composition [A1 M1(μ‐CH2)2(μ‐EX3)M2 A2] (M1, M2=Co, Rh, Ir; A1, A2=F, Cl, Br, I, κ2‐acac; E=P, As, Sb, X=H, F, CH3) has been analyzed. A number of factors have been identified that favor bridging or semi‐bridging modes for the phosphane ligands and their homologues. A more symmetrical position of the bridging ligand EX3 is promoted by more polar E? X bonding, but by less electronegative (softer) terminal anionic ligands. Among the Group 9 metal elements Co, Rh, and Ir, the computations clearly show that the 4d element rhodium exhibits the largest preference for a {M1(μ‐EX3)M2} bridge, in agreement with experimental observation. Iridium complexes should be valid targets, whereas cobalt does not seem to support well a symmetric bridging mode. Analyses of the Electron Localization Function (ELF) indicate a competition between a delocalized three‐center bridge bond and direct metal–metal bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号