首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We incorporate density dependence into continuum Born-Green-Yvon (BGY) theory through calculation of the end-to-end intramolecular correlation function. Whereas in previous studies we had only performed this calculation for the case of an isolated (zero-density) square-well chain of m segments (3相似文献   

2.
We propose a microscopic density functional theory to describe nonuniform ionic fluids composed of chain molecules with charged "heads" and spherical counterions. The chain molecules are modeled as freely jointed chains of hard spheres, the counterions are oppositely charged spheres of the same diameter as all segments of chain molecules. The theory is based on the approach of Yu and Wu [J. Chem. Phys. 117, 2368 (2002)] of adsorption of chain molecules and on theory of adsorption of electrolytes [O. Pizio, A. Patrykiejew, and S. Sokolowski, J. Chem. Phys. 121, 11957 (2004)]. As an application of the proposed formalism we investigate the structure and adsorption of fluids containing segments of different length in a slitlike pore.  相似文献   

3.
We have studied the microscopic structure, thermodynamics of adsorption, and phase behavior of Lennard-Jones fluid in slitlike pores with walls modified due to preadsorption of chain molecules. The chain species are grafted at the walls by terminating segments. Our theoretical considerations are based on a density functional approach in the semigrand canonical ensemble. The applied constraint refers to the constant number of grafted chain molecules in the pore without restriction of the number of chains at each of the walls. We have observed capillary condensation of Lennard-Jones fluid combined with the change of the distribution of chains from nonsymmetric to symmetric with respect to the pore walls. The phase diagrams of the model are analyzed in detail, dependent on the pore width, length of chains, and grafted density.  相似文献   

4.
《Soft Materials》2013,11(3):313-342
We present a density functional approach to orientational ordering in homopolymeric systems. The polymers are modeled as chains of identical rodlike segments connected via a simple generic bending potential. The segments are impenetrable to each other, and it is their mutual excluded volume that drives the transition from the orientationally disordered isotropic phase to the orientationally ordered nematic fluid. These excluded volume effects are accounted for within the so‐called Onsager approximation at the chain–chain level and in an independent pairwise overlap approximation at the segment–segment level. The Khokhlov and Semenov formalism for nematic wormlike polymers is shown to be an exact limiting case of our treatment. The ordering transition is studied analytically by using a linear stability analysis of the isotropic phase yielding the properties of the system at the isotropic‐nematic (I–N) bifurcation point. Using a numerical scheme, the equilibrium distribution functions in the nematic phase are calculated, and the location of the thermodynamic I–N transition is determined. For stiff bending potentials, chains with a relatively small number of segments are found to behave like wormlike chains, and we determine the regime of model parameters for which this identification holds.  相似文献   

5.
Surface properties of a series of cationic bottle-brush polyelectrolytes with 45-unit-long poly(ethylene oxide) side chains were investigated by phase modulated ellipsometry and surface force measurements. The evaluation of the adsorbed mass of polymer on mica by means of ellipsometry is complex due to the transparency of mica and its birefringence and low dielectric constant. We therefore employed a new method to overcome these difficulties. The charge and the poly(ethylene oxide) side chain density of the bottle-brush polymers were varied from zero charge density and one side chain per segment to one charge per segment and no side chains, thus spanning the realm from a neutral bottle-brush polymer, via a partly charged brush polyelectrolyte, to a linear fully charged polyelectrolyte. The adsorption properties depend crucially on the polymer architecture. A minimum charge density of the polymer is required to facilitate adsorption to the oppositely charged surface. The maximum adsorbed amount and the maximum side chain density at the surface are obtained for the polymer with 50% charged segments and the remaining 50% of the segments carrying poly(ethylene oxide) side chains. It is found that brushlike layers are formed when 25-50% of the segments carry poly(ethylene oxide) side chains. In this paper, we argue that the repulsion between the side chains results in an adsorbed layer that is non-homogeneous on the molecular level. As a result, not all side chains will contribute equally to the steric repulsion but some will be stretched along the surface rather than perpendicular to it. By comparison with linear polyelectrolytes, it will be shown that the presence of the side chains counteracts adsorption. This is due to the entropic penalty of confining the side chains to the surface region.  相似文献   

6.
A microscopic density functional theory is used to investigate the adsorption of short chains on attractive solid surfaces. We analyze the structure of the adsorbed fluid and investigate how the wetting transition changes with the change of the chain length and with the relative strength of the fluid-solid interaction. End segments adsorb preferentially in the first adsorbed layer whereas the concentration of the middle segments is enhanced in the second layer. We observe that the wetting temperature rescaled by the bulk critical temperature decreases with an increase of the chain length. For longer chains this temperature reaches a plateau. For the surface critical temperature an inverse effect is observed, i.e., the surface critical temperature increases with the chain length and then attains a plateau. These findings may serve as a quick estimate of the wetting and surface critical temperatures for fluids of longer chain lengths.  相似文献   

7.
Monte Carlo simulation is used to generate the radial distribution function of freely jointed tangent-bonded hard-sphere chains in the disordered solid phase for chain lengths of three, four, six, and eight segments. The data are used to create an accurate analytical expression of the total radial distribution function of the hard-sphere chains that covers a density range from the solidification point up to a packing fraction of 0.71. It is envisioned that the correlation will help further progress toward molecular thermodynamic treatment of the solid phase in general and toward perturbed chain theories for the solid phase, in particular.  相似文献   

8.
孙喆  宋海华 《物理化学学报》2008,24(8):1487-1492
建立了用于模拟双峰聚合物分子刷相结构的自洽场理论. 模拟结果表明, 良溶剂条件能够促使双峰聚合物分子刷裂分为内外两个亚分子层, 其中短链居于内分子层, 而长链伸展到外分子层. 体系溶解性的加强不仅使聚合物的密度分布逐渐趋近强分凝理论的解析结果, 而且加大了分子链的伸展和链段的局部取向程度. 分子链接枝密度的增加能够促使分子刷的层化, 并且在良溶剂区域, 不同接枝密度的分子链密度分布可以回归到同一条主线. 在良溶剂条件下, 长链的聚合度对短链的密度分布影响不大, 但能够导致长链向外分子层扩展.  相似文献   

9.
A density functional approach to the retention in a chromatography with chemically bonded phases is developed. The bonded phase is treated as brush built of grafted polymers. The chain molecules are modelled as freely jointed spheres. Segments of all components interact with the surface via the hard wall potential whereas interactions between the segments are described by Lennard-Jones (12-6) potential. The structure of the bonded phase is investigated. The distribution of different solutes in the stationary phases is determined. An influence of the following parameters on the retention is analyzed: the grafting density, the grafted chains length, the strength of molecular interactions, the solute sizes, temperature. The theoretical predictions are consisted with numerous experimental results.  相似文献   

10.
11.
We propose a density functional theory to describe adsorption of Lennard-Jones fluid in pillared slit like pores. Specifically, the pillars are built of chains that are bonded by their ends to the opposite pore walls. The approach we propose combines theory of quenched-annealed systems and theory of nonuniform fluids involving chain molecules. We compare the results of theoretical predictions with grand canonical ensemble Monte Carlo simulations and compute theoretical capillary condensation phase diagrams for several model systems.  相似文献   

12.
The global phase behavior (i.e., vapor-liquid and fluid-solid equilibria) of rigid linear Lennard-Jones (LJ) chain molecules is studied. The phase diagrams for three-center and five-center rigid model molecules are obtained by computer simulation. The segment-segment bond lengths are L = sigma, so that models of tangent monomers are considered in this study. The vapor-liquid equilibrium conditions are obtained using the Gibbs ensemble Monte Carlo method and by performing isobaric-isothermal NPT calculations at zero pressure. The phase envelopes and critical conditions are compared with those of flexible LJ molecules of tangent segments. An increase in the critical temperature of linear rigid chains with respect to their flexible counterparts is observed. In the limit of infinitely long chains the critical temperature of linear rigid LJ chains of tangent segments seems to be higher than that of flexible LJ chains. The solid-fluid equilibrium is obtained by Gibbs-Duhem integration, and by performing NPT simulations at zero pressure. A stabilization of the solid phase, an increase in the triple-point temperature, and a widening of the transition region are observed for linear rigid chains when compared to flexible chains with the same number of segments. The triple-point temperature of linear rigid LJ chains increases dramatically with chain length. The results of this work suggest that the fluid-vapor transition could be metastable with respect to the fluid-solid transition for chains with more than six LJ monomer units.  相似文献   

13.
Configurational-bias Monte Carlo simulations in the isobaric-isothermal ensemble (T = 323 K and p = 10 atm) were carried out to probe structural properties of an isolated n-octadecane chain solvated in water, methanol, water-rich, or methanol-rich mixtures and, for comparison, of an isolated chain in the gas phase and for neat liquid n-octadecane. The united-atom version of the TraPPE (transferable potentials for phase equilibria) force field was used to represent n-octadecane and methanol and the TIP-4P model was used for water. In all six environments, broad conformational distributions are observed and the n-octadecane chains are found to predominantly adopt extended, but not all-trans conformations. In addition, a small fraction of more collapsed conformations in which the chain ends approach each other is observed for aqueous hydration, the water-rich solvent mixture and the gas phase, but the simulation data do not support a simple two-state picture with folded and unfolded basins of attraction. For chains in these three "poor" solvent environments, the dihedral angles near the center of the chain show an enhancement of the gauche population. The ensemble of water-solvated chains with end-to-end contacts is preferentially found in a U-shaped conformation rather than a more globular state. An analysis of the local solvation structures in the water-methanol mixtures shows, as expected, an enrichment of the methyl group of methanol near the methylene and methyl segments of the n-octadecane chain. Interestingly, these local bead fractions are enhanced by factors of 2.5 and 1.5 for methyl and methylene segments reflecting the more hydrophobic nature of the former segments.  相似文献   

14.
A simple density functional approach for modeling the adsorption of biomolecules is considered. The model comprises a three-component mixture consisting of spherical and differently charged ions and chain molecules. Spherical ions can form associative bonds with selected segments of a chain. To enable the formation of bonds between chain segments and spherical ions, the statistical associating fluid theory is applied. The present theory is used to study the structure of adsorbed layers, the excess adsorption isotherms, and the capacitance of the double layer.  相似文献   

15.
We study the structure and interfacial properties of model athermal mixtures of colloids and excluded volume polymers. The colloid particles are modeled as hard spheres whereas the polymer coils are modeled as chains formed from tangentially bonded hard spheres. Within the framework of the nonlocal density functional theory we study the influence of the chain length on the surface tension and the interfacial width. We find that the interfacial tension of the colloid-interacting polymer mixtures increases with the chain length and is significantly smaller than that of the ideal polymers. For certain parameters we find oscillations on the colloid-rich parts of the density profiles of both colloids and polymers with the oscillation period of the order of the colloid diameter. The interfacial width is few colloid diameters wide and also increases with the chain length. We find the interfacial width for the end segments to be larger than that for the middle segments and this effect is more pronounced for longer chains.  相似文献   

16.
The interaction between two spherical polymer brushes is studied by molecular dynamics simulation varying both the radius of the spherical particles and their distance, as well as the grafting density and the chain length of the end-grafted flexible polymer chains. A coarse-grained bead-spring model is used to describe the macromolecules, and purely repulsive monomer-monomer interactions are taken throughout, restricting the study to the good solvent limit. Both the potential of mean force between the particles as a function of their distance is computed, for various choices of the parameters mentioned above, and the structural characteristics are discussed (density profiles, average end-to-end distance of the grafted chains, etc.). When the nanoparticles approach very closely, some chains need to be squeezed out into the tangent plane in between the particles, causing a very steep rise of the repulsive interaction energy between the particles. We consider as a complementary method the density functional theory approach. We find that the quantitative accuracy of the density functional theory is limited to large nanoparticle separation and short chain length. A brief comparison to Flory theory and related work on other models also is presented.  相似文献   

17.
在巨正则系综下对阱宽为λ=1.5,链长分别为4、8、16的方阱链状流体实施Monte Carlo模拟,采用建立在完整标度基础上的无偏的Q-参数方法,通过histogram reweighting技术以及有限尺寸标度理论得到了热力学极限下该系列流体的临界温度和临界密度.模拟结果表明,方阱链流体的临界温度随着链长的增加而升高.并且不同链长方阱流体的临界温度均低于已报道的结果.由于本文所采用的完整标度的无偏性,我们估计的临界点更加准确.并且流体的临界温度与链长之间的关系与Flory-Huggins理论相一致.我们还预测了无限链长方阱流体的临界温度,比已有结果略高.  相似文献   

18.
The theory of a freely jointed polymer chain is modified by introduction of interactions between dipole chain segments and an orienting field. Such a field results either from external forces (e.g. external electric or magnetic fields) or represents interactions between dipole segments of chains (molecular mean-field). The distribution of orientations of chain segments and the free energy of a chain in such orienting fields are calculated and discussed.  相似文献   

19.
A density functional theory to describe adsorption of a simple fluid from a gas phase on a surface modified with pre-adsorbed chains is proposed. The chains are bonded to the surface by one of their ends, so they can form a brush-like structure. Two models are investigated. According to the first model all but the terminating segment of a chain can change the configuration during the adsorption of fluid species. The second model assumes that the chains remain "frozen", and the system is considered as a nonuniform quenched-annealed mixture. We apply simple form of interactions to study adsorption phenomena, microscopic structure, and layering transitions. Our principal findings show that new layering phase transitions can occur because of a chemical modification of the substrate under certain conditions, in comparison with nonmodified surfaces. However, opposite trends, that is, smoothing the adsorption isotherms, can also be observed, depending on the surface density of the grafted chains.  相似文献   

20.
Molecular dynamics calculations are used to explore the structure of dense monolayers of long-chain molecules supported on a planar surface. As a model we consider ensembles of flexible chains consisting of N segments (N=32, 64 and 128) in a box with lateral (x, y) periodicity conditions. The effect of surface coverage on the conformational properties of chains is studied. At high coverages, the results of the simulations show that each chain is strongly stretched along the normal to the surface and the mean layer thickness is linear in N. The segment density distribution along the normal is found to be an universal function A2/3 f (zA1/3 N), where A is the surface area per chain. The high-coverage distribution has a well defined broad plateau, in agreement with the so-called blob model. In contrast to the predictions of this model, however, we observe that the chains are strongly stretched at all space scales. Differences between the results of simulations and those predicted by the mean-field theory are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号