首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Covalent sidewall functionalization of single wall carbon nanotubes   总被引:6,自引:0,他引:6  
Alkyllithium reagents may be used to attach alkyl groups to the sidewalls of fluoro nanotubes. Thermal gravimetric analysis combined with UV-vis-Nir spectroscopy has been used to provide a quantitative measure of the degree of functionalization. SWNTs prepared using the HiPco process exhibit a higher degree of alkylation than SWNTs from the laser-oven method, indicating that the smaller diameter fluoro tubes are alkylated more readily. The spectral signature of the pristine SWNTs can be regenerated when the alkylated SWNTs are heated in Ar at 500 degrees C, demonstrating that dealkylation occurs at this temperature. TGA-MS analysis using a sample of n-butylated h-SWNTs showed that 1-butene and n-butane are formed during thermolysis.  相似文献   

2.
采用改进的固相法, 以K2CO3和氢氧化钽为原料, 通过添加KF, 在相对低温下制备了单一钙钛矿结构的KTaO3. KF的加入抑制了烧绿石相的生成, 通过水洗可脱除KF. 使用X射线衍射仪(XRD), 扫描电子显微镜(SEM)和紫外-可见(UV-Vis)漫散射光谱仪对不同温度下制备的产物进行了表征. 结果表明, 各个温度下制备的产物均是由粒径在10~30 nm范围内的粒子聚集成的大颗粒; 500, 600和800℃制备的产物带隙分别为3.68, 3.63和3.54 eV. 进一步考察其它碱金属卤化物对产物结构的影响发现, LiF, NaF和KF的作用相同; 当添加碱金属氯化物时, 主要产物分别是钽酸锂、 钽酸钠和烧绿石结构的钽酸钾.  相似文献   

3.
Analytical 250x4.6 mm I.D. columns packed with iminodiacetic acid (IDA) derivatised silica were used to separate alkali metal ions and the ammonium ion in combination with non-suppressed conductivity detection. The addition of 2.5-10 mmol/l of the macrocyclic crown ether 18-crown-6 to the nitric acid eluent resulted in a change in the elution order and a significant improvement in the resolution between potassium and ammonium because of selective complexation of potassium. However, the admixture of 15-crown-5 did not improve the resolution of lithium and sodium, although 15-crown-5 is a selective complexing agent for sodium. Retention and resolution of lithium, sodium, ammonium, cesium, rubidium and potassium ions increased at lower temperatures down to 1 degree C. The simultaneous separation of alkali and transition metals under isocratic conditions was achieved with an eluent comprising 10 mmol/l 18-crown-6, 1.5 mmol/l dipicolinic acid, and 1.9 mmol/l nitric acid. The chromatographic system enabled the quantitation of alkali metal ions with detection limits in the low ppb range and excellent linearity. Finally, the applicability of the method was approved by quantitation of sodium, ammonium and potassium in different water samples.  相似文献   

4.
Preferential growth of pure single-walled carbon nanotubes (SWNTs) over multi-walled carbon nanotubes (MWNTs) was demonstrated at low temperature by water plasma chemical vapor deposition. Water plasma lowered the growth temperature down to 450 degrees C, and the grown nanotubes were single-walled without carbonaceous impurities and MWNTs. The preferential growth of pure SWNTs over MWNTs was proven with micro-Raman spectroscopy, high-resolution transmission electron microscopy, and electrical characterization of the grown nanotube networks.  相似文献   

5.
Pyridine-functionalized single-walled carbon nanotubes (SWNTs) are prepared from the addition of a pyridine diazonium salt to nanotubes. The location and distribution of the functional groups is determined by atomic force microscopy using electrostatic interactions with gold nanoparticles. The pyridine-functionalized SWNTs are able to act as cross-linkers and hydrogen bond to poly(acrylic acid) to form SWNT hydrogels. The pyridine-functionalized SWNTs are further characterized using Raman, FTIR, UV/vis-NIR, and X-ray photoelectron spectroscopy and thermogravimetric analysis-mass spectrometry.  相似文献   

6.
α-Metallated ylides have revealed themselves to be versatile reagents for the introduction of ylide groups. Herein, we report the synthesis of the thiophosphinoyl and piperidyl (Pip) substituted α-metallated ylide [Ph2(Pip)P=C−P(S)Ph2]M (M=Li, Na, K) through a four-step synthetic procedure starting from diphenylmethylphosphine sulfide. Metallation of the ylide intermediate was successfully accomplished with different alkali metal bases delivering the lithium, sodium and potassium salts, the latter isolable in high yields. Structure analyses of the lithium and potassium compounds in the solid state with and without crown ether revealed different aggregates (monomer, dimer and hexamer) with the metals coordinated by the thiophosphoryl moiety and ylidic carbon atom. Although the piperidyl group does not coordinate to the metal, it significantly contributes to the stability of the yldiide by charge delocalization through negative hyperconjugation.  相似文献   

7.
Single-walled carbon nanotubes have been functionalized and the specific surface areas of the functionalized nanotubes measured. Contrary to expectations, functionalization leads to a decrease in specific surface area compared to that of the unfunctionalized nanotubes. Treatment with a concentrated 1:1 nitric/sulfuric acid mixture followed by high-temperature baking at 1000 degrees C was found to increase the specific surface area of the nanotubes. For the unfunctionalized SWNTs, this treatment increases the specific surface area (SSA) by 20%. In the case of SWNTs functionalized by n-butyl groups the increase in the SSA was nearly 2-fold with the value increasing from 410 (drying at 110 degrees C) to 770 m2/gm (acid and bake treatment followed by drying at 110 degrees C). For the ozonized SWNTs, the SSA increases more than 3-fold from 381 (drying at 110 degrees C) to 1068 m2/gm (acid and bake treatment followed by drying at 110 degrees C). SEM images indicate that the nanotubes rebundle in the solid state with an average bundle size of 10-30 nm. AFM studies show that the ozonized tubes have been cut to short bundles after ozonolysis. Hydrogen uptake studies carried out on the baked ozonized tubes led to a 3 wt % hydrogen uptake at 77 K and 30 bar.  相似文献   

8.
A new gallam-exchange technique for separation of alkali metals was developed. The alkali metal separation factors were determined for the gallam-exchange systems LiGa-NaOH, LiGa-KOH, and KGa-NaOH. The effect of temperature and concentration of the exchanging phases on the separation factors were studied for the systems LiGa-NaOH and LiGa-KOH. Kinetic parameters of lithium, sodium, and potassium element exchanges were determined. The properties of gallam-exchange and amalgam-exchange systems were compared.  相似文献   

9.
本文研究了稀土氯化物对碱金属氢化反应的催化作用。金属钠在稀土氯化物LnCl~3(Ln=La,Nd,Sm,Dy,Yb)和萘的催化下,在常压、40℃下能与氢气反应,生成氢化钠;稀土氯化物的催化活性顺序为LaCl~3>NdCl~3>SmCl~3>DyCl~3>YbCl~3。金属锂可发生类似反应,生成LiH;但其反应动力学曲线与金属钠相比明显不同。稀土氯化物对金属钾的氢化反应不显示催化作用。对反应机理的初步探索表明:碱金属与萘反应生成的阴离子自由基型物种可能是氢化反应的中间体,稀土氯化物的作用是催化该中间体的氢化反应。该反应的产物是一类大比表面积(NaH的比表面积为83m^2/g)、多孔性固体粉末,在空气中可自燃。它们具有比一般市售碱金属氢化物高得多的反应活性,并能与过渡金属配合物组成高活性烯烃加氢催化。  相似文献   

10.
主要考察了以路易斯酸为催化剂,几种卤代烷烃为反应试剂的单壁碳纳米管侧壁的亲电加成反应,并通过傅立叶红外光谱、热失重分析和拉曼光谱验证了实验所得产物。此反应的目的是在单壁碳纳米管的侧壁连上烷基基团以提高其溶解性和分散性,并可使其更好地与聚烯烃相结合从而提高复合材料的性能,因而具有较高的研究和应用价值。  相似文献   

11.
Methods of insertion of azafullerenes in single-walled carbon nanotubes (SWNTs) at different temperatures were investigated, while the effects of the conditions applied on the structure of azafullerene-based peapods, namely, C59N@SWNTs, were explored. Morphological characteristics of C59N@SWNTs were assessed and evaluated by means of high-resolution transmission electron microscopy (HR-TEM). Pathways and chemical reactions that occur upon encapsulation of C59N within SWNTs were evaluated. Monomeric azafullerenyl radical C59N. as inserted into SWNTs at high temperature, from purified (C59N)2 in the gas phase, can undergo a variety of different transformations forming dimers, oligomers or existing in its monomeric form inside SWNTs due to the stabilization effect by nanotube side walls. However, under milder conditions, that is, at lower temperature, bisazafullerene (C59N)2 can be inserted into SWNTs in its pristine dimeric form.  相似文献   

12.
Titanate nanotubes were synthesized under hydrothermal conditions. The optimized synthesis (100-180 degrees C, longer than 48 h), thermal and hydrothermal stability, ion exchangeability and consequent magnetic and optical properties of the titanate nanotubes were systematically studied in this paper. First, nanotubes with monodisperse pore-size distribution were prepared. The formation mechanism of the titanate nanotubes was also studied. Second, the thermal and hydrothermal stability were characterized with X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR), and Raman spectroscopy. Results showed that sodium ions played a significant role in the stability of the frameworks. Third, the selective ion exchangeability was demonstrated with a series of ions. The ion substitution also enlarged the BET surface area of the titanate nanotubes to 240 m(2) x g(-1). Combination of these two features implied that these nanotubes might be functionalized by substitution of different transitional-metal ions and consequently used for selective catalysis. Magnetism, photoluminescence, and UV/Vis spectra of the substituted titanate nanotubes revealed that the magnetic and optical properties of the nanotubes were modifiable.  相似文献   

13.
Alkali metals absorbed into silica gel yield three stages of unique loose black powders (M-SG) that are strong reducing agents. All react nearly quantitatively with water to form hydrogen. Liquid Na-K alloys form air-sensitive powders at room temperature that can be converted at 150 degrees C to a form that is sensitive to moisture but not to dry air. Slowly heating sodium and silica gel to 400 degrees C yields a third type that can be handled in ambient air with only slow degradation by atmospheric moisture. These materials eliminate many hazards associated with pure alkali metals and provide easily handled reducing agents and hydrogen sources. They could be used in continuous-flow reactors to reduce and protonate aromatics, dechlorinate alkyl and aryl halides, and desulfurize various compounds.  相似文献   

14.
The reactions of single-walled carbon nanotubes (SWNTs) with succinic or glutaric acid acyl peroxides in o-dichlorobenzene at 80-90 degrees C resulted in the addition of 2-carboxyethyl or 3-carboxypropyl groups, respectively, to the sidewalls of the SWNT. These acid-functionalized SWNTs were converted to acid chlorides by derivatization with SOCl(2) and then to amides with terminal diamines such as ethylenediamine, 4,4'-methylenebis(cyclohexylamine), and diethyltoluenediamine. The acid-functionalized SWNTs and the amide derivatives were characterized by a set of materials characterization methods including attenuated total reflectance (ATR) FTIR, Raman and solid state (13)C NMR spectroscopy, transmission electron microscopy (TEM), and thermal gravimetry-mass spectrometry (TG-MS). The degree of SWNT sidewall functionalization with the acid-terminated groups was estimated as 1 in 24 carbons on the basis of TG-MS data. In comparison with the pristine SWNTs, the acid-functionalized SWNTs show an improved solubility in polar solvents, for example, alcohols and water, which enables their processing for incorporation into polymer composite structures as well as for a variety of biomedical applications.  相似文献   

15.
Vertical array growth of small diameter single-walled carbon nanotubes   总被引:2,自引:0,他引:2  
A hot filament chemical vapor deposition method has been developed to grow vertical array single-walled carbon nanotubes (SWNTs). In this study, a hot filament (temperature greater than 2000 degrees C) was used to activate gas mixtures of hydrogen and carbon containing species at sub-atmospheric pressures. Silicon substrates decorated with islands of iron were directly inserted into a preheated furnace in which a hot filament is activating the gas. Vertical arrays of SWNTs are produced with diameters ranging from 0.78 to 1.6 nm. The samples were characterized with Raman and fluorescence spectroscopy and SEM and TEM microscopy.  相似文献   

16.
Summary A study has been made of the separation of alkali and alkaline earth metals. With mixtures of solvents, such as ethyl cellosolve, water and hydrochloric acid and acetone, water and hydrochloric acid in the ratio of 702010 and at different temperatures, a complete separation of alkaline earth metals was effected. Of the alkali metals only lithium, sodium and potassium could be separated from each other but rubidium and caesium always accompanied potassium.  相似文献   

17.
采用萃取法测量了准东煤中不同赋存形式碱金属(Na、K)的含量,Na以水溶性为主,占59%,K主要以不可溶的硅铝酸盐存在,占总量的53%。进行准东煤燃烧实验,燃烧温度为400-950℃,研究了高碱准东煤燃烧过程中碱金属在气、固两相中的分布。结果表明,随温度升高,煤粉成灰率降低,Na从煤中不断析出进入气相;而K在400℃时,气相中的含量低于固相,温度高于500℃,气相中的含量超过固相并基本保持不变;碱金属在固相中出现富集现象,灰中碱金属的质量分数随温度升高;气相中的Na主要来源于水溶性,析出的K除了可溶性外,还有部分来自不可溶的硅铝酸盐;根据国标灰的XRD分析,煤中碱金属在燃烧过程中会与SiO_2和Al_2O_3反应生成钠长石和霞石等低熔点化合物。  相似文献   

18.
豆荚型纳米材料C60@SWNTs的制备和表征   总被引:1,自引:0,他引:1  
通过气相扩散的方法将C60填入单壁碳纳米管(SWNTs),制备了豆荚型纳米材料C60@SWNTs,并利用高分辨电子显微镜(HRTEM)和拉曼光谱(Raman spectra)对其进行了表征.结果均证明C60以较高的比例填充入单壁碳纳米管中.HRTEM结果表明,填入单壁碳纳米管的C60之间的距离与面心立方C60晶体中C60之间的距离有细微的差别,说明C60分子与SWNTs间存在弱的范德华相互作用.此外,还观察到在电子束的照射下,C60在SWNT中两两聚合的现象.  相似文献   

19.
对新疆煤采用三步化学提取实验(蒸馏水洗、醋酸铵洗、稀盐酸洗)以分析其碱金属赋存特性,对水溶的阴离子进行了离子色谱分析。分别检测了在不同温度、不同停留时间下准东煤灰的碱金属量,并用Factsage软件模拟该煤灰中碱金属的析出形式。结果表明,煤中的钠主要是水溶钠,钾主要以不可溶钾存在,水溶碱金属主要以水合离子形式的氯化物存在。准东煤中碱金属在400~600℃析出最快,主要是水溶态碱金属的释放,碱金属的释放主要发生在燃烧后期。灰中碱金属在高温下会与烟气中的成分发生反应,主要产物是氯化物以及氢氧化物。在700℃钠对准东煤中低温共融物的形成有很大贡献。  相似文献   

20.
The charge transfer induced lithiation of single-wall carbon nanotubes (SWNTs) was investigated by in situ monitoring by Raman spectroscopy as lithium was added incrementally to a dispersion of SWNTs in liquid ammonia. Charge transfer from liquid ammonia solvated lithium to the SWNTs led to intercalation of lithium into the SWNT ropes, as well as to the semi-covalent lithiation of the SWNTs. Raman spectra of the SWNTs recorded as lithium was added showed a 30 wavenumber downshift of the G band (1594 cm−1) with the concomitant appearance of a new peak at 1350 cm−1 that was assigned as the signature of the lithiated SWNTs. Addition of 1-iodododecane to the lithiated SWNTs resulted in the covalent attachment of dodecyl groups. The intercalation of lithium throughout the SWNT ropes led to complete dodecylation of all individual SWNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号