共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Guangzhi Du Qingtao Li Yuhong Zhang 《Numerical Methods for Partial Differential Equations》2020,36(6):1601-1610
In this paper, we consider the effect of adding a coarse mesh correction to the two-grid algorithm for the mixed Navier–Stokes/Darcy model. The method yields both L2 and H1 optimal velocity and piezometric head approximations and an L2 optimal pressure approximation. The method involves solving one small, coupled, nonlinear coarse mesh problem, two independent subproblems (linear Navier–Stokes equation and Darcy equation) on the fine mesh, and a correction problem on the coarse mesh. Theoretical analysis and numerical tests are done to indicate the significance of this method. 相似文献
4.
5.
6.
7.
Acta Mathematica Sinica, English Series - In this paper, for the mixed Navier—Stokes/Darcy model with Beavers—Joseph—Saffman’s interface condition, we first establish an a... 相似文献
8.
Fattehallah Ghadi Vitoriano Ruas Mohamed Wakrim 《Journal of Computational and Applied Mathematics》2008
In this paper we present a new method to solve the 2D generalized Stokes problem in terms of the stream function and the vorticity. Such problem results, for instance, from the discretization of the evolutionary Stokes system. The difficulty arising from the lack of the boundary conditions for the vorticity is overcome by means of a suitable technique for uncoupling both variables. In order to apply the above technique to the Navier–Stokes equations we linearize the advective term in the vorticity transport equation as described in the development of the paper. We illustrate the good performance of our approach by means of numerical results, obtained for benchmark driven cavity problem solved with classical piecewise linear finite element. 相似文献
9.
《偏微分方程通讯》2013,38(7-8):955-987
Abstract We study boundary regularity of weak solutions of the Navier–Stokes equations in the half-space in dimension n ≥ 3. We prove that a weak solution u which is locally in the class L p, q with 2/p + n/q = 1, q > n near boundary is Hölder continuous up to the boundary. Our main tool is a pointwise estimate for the fundamental solution of the Stokes system, which is of independent interest. 相似文献
10.
We generalize the splitting algorithms proposed earlier for the construction of efficient difference schemes to the finite volume method. For numerical solution of the Euler and Navier–Stokes equations written in integral form, some implicit finite-volume predictor-corrector scheme of the second order of approximation is proposed. At the predictor stage, the introduction of various forms of splitting is considered, which makes it possible to reduce the solution of the original system to separate solution of individual equations at fractional steps and to ensure some stability margin of the algorithm as a whole. The algorithm of splitting with respect to physical processes and spatial directions is numerically tested. The properties of the algorithm are under study and we proved its effectiveness for solving two-dimensional and three-dimensional flow-around problems. 相似文献
11.
In this paper, an implicit fractional-step method for numerical solutions of the incompressible Navier–Stokes equations is studied. The time advancement is decomposed into a sequence of two steps, and the first step can be seen as a linear elliptic problem; on the other hand, the second step has the structure of the Stokes problem. The two problems satisfy the full homogeneous Dirichlet boundary conditions on the velocity. At the same time, we introduce a diffusion term −θΔu in all steps of the schemes. It allows to calculate by the large time step and enhance numerical stability by choosing the proper parameter values of θ. The convergence analysis and error estimates for the intermediate velocities, the end-of step velocities and the pressure solution are derived. Finally, numerical experiments show that the feasibility and effectiveness of this method. 相似文献
12.
13.
In this paper, the blood flow problem is considered in a blood vessel, and a coupling system of Navier–Stokes equations and linear elastic equations, Navier–Lame equations, in a cylinder with cylindrical elastic shell is given as the governing equations of the problem. We provide two finite element models to simulating the three-dimensional Navier–Stokes equations in the cylinder while the asymptotic expansion method is used to solving the linearly elastic shell equations. Specifically, in order to discrete the Navier–Stokes equations, the dimensional splitting strategy is constructed under the cylinder coordinate system. The spectral method is adopted along the rotation direction while the finite element method is used along the other directions. By using the above strategy, we get a series of two-dimensional-three-components (2D-3C) fluid problems. By introduce the S-coordinate system in E3 and employ the thickness of blood vessel wall as the expanding parameter, the asymptotic expansion method can be established to approximate the solution of the 3D elastic problem. The interface contact conditions can be treated exactly based on the knowledge of tensor analysis. Finally, numerical test shows that our method is reasonable. 相似文献
14.
V.V.K. Srinivas Kumar B.V. Rathish Kumar P.C. Das 《Nonlinear Analysis: Theory, Methods & Applications》2008
The objective in this paper is to discuss the existence and the uniqueness of a weighted extended B-spline (WEB-spline) based discrete solution for the stationary incompressible Navier–Stokes equations. The WEB-spline discretization is newly developed methodology which satisfies the inf–sup condition or Ladyshenskaya–Babus?ka–Brezzi (LBB) condition. The main advantage of these new elements over standard finite elements is that they use regular grids instead of irregular partitions of the domain, thus eliminating the difficult and time-consuming pre-processing step. An error estimate for this WEB-spline based discrete solution is also obtained. 相似文献
15.
Andrei Yu. Khrennikov 《Applicable analysis》2020,99(8):1425-1435
ABSTRACTWe prove the local solvability of the p-adic analog of the Navier–Stokes equation. This equation describes, within the p-adic model of porous medium, the flow of a fluid in capillaries. 相似文献
16.
17.
We show that there are no singular pseudo-self-similar solutions of the Navier-Stokes system with finite energy. Received March 8, 2000 / Published online February 5, 2001 相似文献
18.
L. I. Rubina O. N. Ul’yanov 《Proceedings of the Steklov Institute of Mathematics》2017,297(1):163-174
We discuss the initial and boundary value problems for the system of dimensionless Navier–Stokes equations describing the dynamics of a viscous incompressible fluid using the method of characteristics and the geometric method developed by the authors. Some properties of the formulation of these problems are considered. We study the effect of the Reynolds number on the flow of a viscous fluid near the surface of a body. 相似文献
19.
Summary. A finite element formulation is developed for the two dimensional nonlinear time dependent compressible Navier–Stokes equations on a bounded domain. The existence and uniqueness of the solution to the numerical formulation is proved. An error estimate for the numerical solution is obtained. Received September 9, 1997 / Revised version received August 12, 1999 / Published online July 12, 2000 相似文献
20.
《Stochastic Processes and their Applications》2020,130(4):2407-2432
In this paper we show that solutions of two-dimensional stochastic Navier–Stokes equations driven by Brownian motion can be approximated by stochastic Navier–Stokes equations forced by pure jump noise/random kicks. 相似文献